

Approved by the

Hampstead Board of Selectmen

(Date)

Prepared with the Assistance of the

This project was partially funded by

NH Homeland Security and Emergency Management

Certificate of Adoption

WHEREAS, the Town of Hampstead received funding from the NH Office of Homeland Security and Emergency Management under a Pre-Disaster Mitigation Grant and assistance from Rockingham Planning Commission in the preparation of the Hampstead Hazard Mitigation Plan Update 2018; and

WHEREAS, several public planning meetings were held between December 2017 and June 2018 regarding the development and review of the Hampstead Hazard Mitigation Plan Update 2018; and

WHEREAS, the Exeter Hazard Mitigation Plan Update 2018 contains several potential future projects to mitigate hazard damage in the Town of Exeter; and

WHEREAS, a duly-noticed public hearing was held by the Hampstead Board of Selectmen on ______to formally approve and adopt the Hampstead Hazard Mitigation Plan Update 2018.

NOW, THEREFORE BE IT RESOLVED that the Hampstead Board of Selectmen:

- The Plan is hereby adopted as the official plan of the Town of Hampstead:
- The respective individuals identified in the mitigation strategy of the Plan are hereby directed to pursue implementation of the recommended actions assigned to them;
- Future revisions and Plan maintenance required by 44 CFR 201.6 and FEMA are hereby adopted as part of this resolution for a period of five (5) years from the date of this resolution;
- An annual report of the progress of the implementation elements of the Plan shall be presented to the Board of Selectmen by the Town's Emergency Management Director.

NOW, THEREFORE BE IT RESOLVED that the Hampstead Board of Selectmen adopts the Hampstead Hazard Mitigation Plan Update 2018.

IN WITNESS THEREOF, the un of Hampstead on this	dersigned has affixed his/her signature day of	and the corporate seal of the Town
	Selectman	
	Selectman	
	Selectman	
		ATTEST
		Public Notary

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
CHAPTER I – INTRODUCTION Background Methodology Hazard Mitigation Goals and Objectives Acknowledgements	2 2 2 6 7
CHAPTER II – COMMUNITY PROFILE Natural Features Current and Future Development Trends	8 9 10
CHAPTER III – NATURAL HAZARDS IN THE TOWN OF HAMPSTEAD What are the Hazards? Definitions of Natural Hazards Profile of Past and Potential Natural Hazards	12 12 12 12
CHAPTER IV – CRITICAL FACILITIES	27
CHAPTER V – DETERMINING HOW MUCH WILL BE AFFECTED Calculating Potential Loss	32 32
CHAPTER VI – EXISTING HAZARD MITIGATION PROGRAMS	36
CHAPTER VII – NEWLY IDENTIFIED MITIGATION STRATEGIES / ACTIONS Potential Mitigation Strategies	40
CHAPTER VIII – FEASIBILITY AND PRIORITIZATION OF PROPOSED MITIGATION STRATEGIES	43
CHAPTER IX – IMPLEMENTATION SCHEDULE FOR PRIORITY MITIGATION STRATEGIES	47
CHAPTER X – MONITORING, EVALUATING AND UPDATING THE PLAN	48
APPENDIX A – SUMMARY OF HAZARD MITIGATION STRATEGIES APPENDIX B – TECHNICAL AND FINANCIAL ASSISTANCE FOR HAZARD MITIGATION APPENDIX C – SAFFIR/SIMPSON HURRICANE SCALE APPENDIX D – FUJITA TORNADO DAMAGE SCALE APPENDIX E – RICHTER MAGNITUDE SCALE	NC

LIST OF MAPS

MAP 1: Existing Land Use

MAP 2: Past and Future Hazards

MAP 3: Critical Facilities

LIST OF FIGURES

FIGURE 1: Location Map of Hampstead, New Hampshire FIGURE 2: Watershed Map of Hampstead, New Hampshire FIGURE 3: Wetlands Map of Hampstead, New Hampshire FIGURE 4: Floodplains of Hampstead, New Hampshire

LIST OF TABLES

TABLE 1: Hampstead NFIP Policy & Loss Strategies

TABLE 2: Past Hazard Events in Hampstead and Rockingham County

TABLE 3: Category 1- Emergency Response Services and Facilities

TABLE 4: Category 2- Non- Emergency Response Facilities

TABLE 5: Category 3- Facilities/Populations to Protect

TABLE 6: Category 4-Potential Resources

TABLE 7: Existing Hazard Mitigation Programs

TABLE 8: List of Hazard Mitigation Strategies

TABLE 9a-9e: Prioritized Mitigation Actions

TABLE 10: Action Plan for Proposed Mitigation Actions

EXECUTIVE SUMMARY

The Hampstead Hazard Mitigation Plan (herein also referred to as the Plan) was compiled to assist the Town of Hampstead in reducing and mitigating future losses from natural hazard events. The Plan was developed by the Rockingham Planning Commission and participants from the Town of Hampstead Natural Hazard Mitigation Committee and contains the tools necessary to identify specific hazards, and aspects of existing and future mitigation efforts.

The following *natural* hazards are addressed:

- Flooding
- Hurricane-High Wind Event
- Severe Winter Weather
- Wildfire
- Earthquake
- Drought
- Extreme Temperatures

The list of *critical facilities* includes:

- Municipal facilities Fire Station, Police Station, Library, Town Offices and Town Garage
- Communication facilities
- Schools
- Shelters
- Medical and commerical businesses with services and supplies
- Evacuation routes
- Vulnerable Populations

The Hampstead Hazard Mitigation Plan Update 2018 is considered a work in progress and should be revisited annually to assess whether the existing and suggested mitigation strategies are successful. Copies have been distributed to the Town Hall and the Emergency Operations Center. A copy of the Plan is also on file at The Rockingham Planning Commission, New Hampshire Homeland Security and Emergency Management (NHHSEM) and the Federal Emergency Management Agency (FEMA). This Document was approved by both agencies prior to adoption at the local level.

CHAPTER I – INTRODUCTION

Background

The New Hampshire Homeland Security and Emergency Management (NHHSEM) has a goal for all communities within the State of New Hampshire to establish local hazard mitigation plans to reduce and mitigate future losses from natural hazard events. The NHHSEM outlined a process whereby communities throughout the State may be eligible for grants and other assistance upon completion of a local hazard mitigation plan. A handbook entitled *Hazard Mitigation Planning for New Hampshire Communities* was created by NHHSEM to assist communities in developing local plans. The State's Regional Planning Commissions are charged with providing assistance to selected communities to develop local plans.

The Hampstead Hazard Mitigation Plan Update 2018 was prepared by participants from the Town of Hampstead Hazard Mitigation Team with the assistance and professional services of the Rockingham Planning Commission (RPC) under contract with the New Hampshire Homeland Security and Emergency Management operating under the guidance of Section 44 CFR 201.6. The Plan serves as a strategic planning tool for use by the Town of Hampstead in its efforts to identify and mitigate the future impacts of natural and/or man-made hazard events.

Methodology

The Rockingham Planning Commission (RPC) organized the first meeting with emergency management officials from the Town of Hampstead on November 28, 2017 to begin the initial planning stages of the *Plan Update* (primarily step 1). This meeting precipitated the development of the *Natural Hazards Mitigation Committee* (herein after, the *Committee*). RPC and participants from the Town developed the content of the *Plan* using the ten-step process set forth in the *Hazard Mitigation Planning for New Hampshire Communities*. The following is a summary of the ten-step process conducted to compile the Plan. Publicly noticed work session meetings were also held on December 6, 2017, December 12, 2017, April 10, 2018, May 8, 2018 (add other meeting dates here.) The Town of Hampstead's Emergency Management Director and staff from the Rockingham Planning Commission solicited input on the Plan from local officials, abutting communities, and residents throughout the Plan development process.

The Town's 2013 Plan served as the starting point for discussion on hazards impacting the Town, as well as discussions on mitigation strategies. The 2013 Plan served as a reference for local land use regulations and policies, development of the Town's Capital Improvement Plan and department budgets, and has been referenced in several reports, including the RPC's 2015 Regional Master Plan.

Step 1- Form the Committee

The Emergency Management Director invited Department Heads from all the Town's departments to participate in the Plan Update process, as well as staff from the school. As a result, the Plan Update Committee included the Town's Emergency Management Director, Administrative Assistant, Fire Chief, Police Department Detective, Road Agent, Chief Building Official, Building and Grounds Department, Planning Board Secretary, and Facilities Director. Public notices about the Plan Update process were posted on the

Town website and the Rockingham Planning Commission's website and monthly newsletter. All meetings were open to the public, and RPC staff kept municipalities in the region informed of the Plan Update. In addition, RPC staff working in the abutting towns of Sandown, Danville, Kingston, Atkinson, Plaistow and Derry kept local officials in these communities informed of the update to Hampstead's Plan Update and the opportunity to comment on regional mitigation strategies.

Step 2 – Map the Hazards

Participants in the *Committee* identified areas where damage from historic natural disasters have occurred and areas where critical man-made facilities and other features may be at risk in the future for loss of life, property damage, environmental pollution and other risk factors. RPC generated a set of base maps with GIS (Geographic Information Systems) that were used in the process of identifying past and future hazards.

Step 3 – Identify Critical Facilities and Areas of Concern

Participants in the Committee identified facilities and areas considered to be important to the Town for emergency management purposes, for provision of utilities and community services, evacuation routes, and for recreational, historical, cultural and social value. These facilities and areas are identified on the Critical Facilities Map.

Step 4 – Identify Existing Mitigation Strategies

After collecting detailed information on each critical facility in Hampstead, the Committee and RPC staff identified existing Town mitigation strategies relative to flooding, hurricane and wind events, severe winter weather, wildfire, earthquake, drought, and extreme temperatures. This process involved reviewing the Town's 2013 Hazard Mitigation Plan, the Town's Master Plan and Capital Improvements Program, Zoning Ordinance, Subdivision Regulations, Site Plan Review Regulations, Emergency Operations Plan, and the Town's participation in the National Flood Insurance Program (NFIP).

Step 5 - Identify the Gaps in Existing Mitigation Strategies

The existing strategies were then reviewed by the RPC and the Committee for coverage and effectiveness, as well as the need for improvement.

Step 6 - Identify Potential Mitigation Strategies

A list was developed of additional hazard mitigation actions and strategies for the Town of Hampstead. The existing Hazard Mitigation Plans of Portsmouth, North Hampton and

Plaistow were just a few towns that were utilized to identify new mitigation strategies as well as the town Master Plan and Emergency Operations Plan.

Step 7 - Prioritize and Develop the Action Plan

The proposed hazard mitigation actions and strategies were reviewed, and each strategy was rated (good, average, or poor) for its effectiveness according to several factors (e.g., technical and administrative applicability, political and social acceptability, legal authority, environmental impact, financial feasibility). Each factor was then scored, and all scores were totaled for each strategy. Strategies were ranked by overall score for preliminary prioritization then reviewed again under Step 8.

Step 8 - Determine Priorities

The preliminary prioritization list was reviewed to make changes and determine a final prioritization for new hazard mitigation actions and existing protection strategy improvements identified in previous steps. RPC also presented recommendations to be reviewed and prioritized by the Plan Update Committee.

Step 9 - Develop Implementation Strategy

Using the chart provided under Step 9 in the handbook, an implementation strategy was created which included person(s) responsible for implementation (who), a timeline for completion (when), and a funding source and/or technical assistance source (how) for each identified hazard mitigation actions. Also, when the Master Plan or the Hampstead Capital Improvement Plan (CIP) is updated the *Hampstead Hazard Mitigation Plan* shall be consulted to determine if strategies or actions suggested in the *Plan* can be incorporated into the Town's future land use recommendations and or capital expenditures.

Step 10 - Adopt and Monitor the Plan

RPC staff compiled the results of Steps 1 to 9 in a draft document. This draft *Plan* was reviewed by members of the Committee and by staff members at the RPC. RPC staff compiled the results of Steps 1 to 8 in a draft document. This draft *Plan* was reviewed by members of the Committee and by staff members at the RPC. The draft *Plan* was also placed on the RPC website for review by the public, neighboring communities, agencies, businesses, and other interested parties to review and make comments via email. A duly noticed public meeting was held by the Hampstead Board of Selectmen on June 25, 2018. The meeting allowed the community and neighboring towns to provide comments and suggestions for the *Plan* in person, prior to the document being finalized. After the meeting it was decided the plan be posted on the town website for further public comment and another Selectmen's hearing was held on (date to be added) to review, if any, comments from the town and surrounding areas. It also allowed board and committee members to review other planning documents in town such as the Master Plan and CIP to consider and incorporate pertinent information that may be included

within the Hazard Mitigation Plan. The draft was revised to incorporate comment from the Selectmen, Planning Board and general public and then submitted to the NH HSEM and FEMA Region I for their review and comments. Any changes required by NH HSEM and FEMA were made and a revised draft document was then submitted to the Hampstead Board of Selectmen for their final review. A public hearing was then held by the Hampstead Board of Selectmen on (date to be added), this public hearing the Plan Update was approved and adopted by the Board of Selectman. The formal letter of approval from FEMA Region 1 can be found in the Appendix.

Hazard Mitigation Goals and Objectives of the Town of Hampstead, New Hampshire

The Town of Hampstead sets forth the following hazard mitigation goals and objectives:

- Reduce or avoid long-term vulnerabilities posed by natural hazards impacting Hampstead, including the impacts from flooding, hurricanes and high wind events, severe winter weather, wildfire and conflagration, earthquakes, drought, extreme temperatures, and climate change, including sea-level rise and coastal storm surge.
- Improve upon the protection of the Town of Hampstead's general population, the citizens of the State and guests, from all natural and man-made hazards.
- Reduce the potential impact of natural and man-made disasters on Hampstead and the State's Critical Support Services.
- Reduce the potential impact of natural and man-made disasters on Hampstead's Critical Facilities in the State.
- Reduce the potential impact of natural and man-made disaster on Hampstead's and the State's infrastructure.
- Improve Hampstead's Emergency Preparedness.
- Improve Hampstead's Disaster Response and Recovery Capability.
- Reduce the potential impact of natural and man-made disasters on private property in Hampstead.
- Reduce the potential impact of natural and man-made disasters on Hampstead's and the State's economy.
- Reduce the potential impact of natural and man-made disasters on Hampstead's and the State's natural environment.
- Reduce Hampstead's and the State's liability with respect to natural and man-made hazards generally.
- Reduce the potential impact of natural and man-made disasters on Hampstead's and the State's specific historic treasures and interests as well as other tangible and intangible characteristics that add to the quality of life to the citizens and guests of the State and the Town.
- Identify, introduce and implement cost effective Hazard Mitigation measures so as to accomplish Hampstead's and the States' goals and objectives in order to raise the awareness and acceptance of hazard mitigation planning.

Through the adoption of this Plan the Town of Hampstead concurs and adopts these goals and objectives.

Acknowledgements

The Hampstead Board of Selectmen extends special thanks to those that assisted in the development of this Plan Update by serving as member of Natural Hazards Mitigation Committee:

Sally Theriault, Administrative Assistant, Town of Hampstead Chris Dane, Emergency Management Director, Town of Hampstead Kristopher Emerson, Chief Building Official, Town of Hampstead Jon Worthen, Road Agent, Town of Hampstead Steve Harms, Building and Grounds, Town of Hampstead Michael Carrier, Fire Chief, Town of Hampstead Mark Conway, Police Department, Town of Hampstead Debby Soucy, Planning Board Secretary, Town of Hampstead

The Hampstead Board of Selectmen offers thanks to the NHHSEM which provided funding and assistance with the development of this Plan Update.

In addition, thanks are extended to the staff of the Rockingham Planning Commission for professional services, process facilitation and preparation of this document.

CHAPTER II – COMMUNITY PROFILE

Hampstead, New Hampshire is located in Rockingham County in southeastern New Hampshire. The 2010 US Census populations was 8,523. The town encompasses approximately 13.4 square miles, or 8,350 acres. Of this area, 400 acres are inland waters. Island Pond, in the southwest, is 498 areas of which 212 are in Hampstead. Wash Pond in the northwest corner of town is 151 acres, all within Hampstead. Angle Pond in the northeast portion of town is 150 acres, 41 in Hampstead. These ponds attract a significant seasonal population and summer youth camp. The highest elevation in town is 460 feet above sea level, near the Butman Hill in the town's northwest corner.

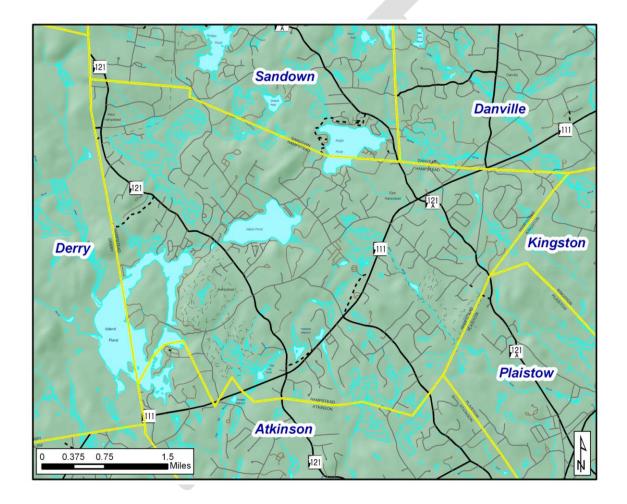
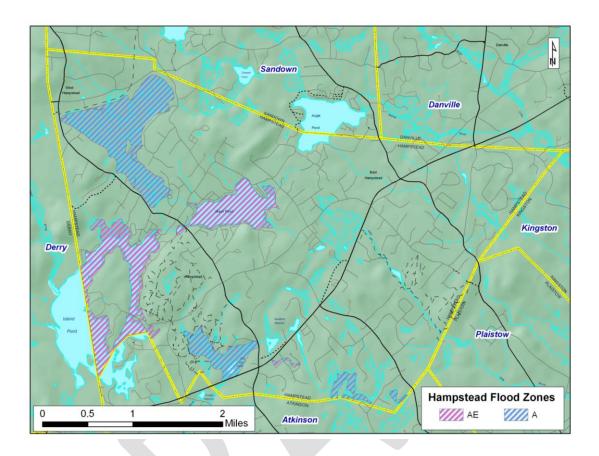



Figure 1: Location Map of Hampstead, New Hampshire

Figure 2: Hampstead Flood Zones

Hampstead lies mostly within the Merrimack River watershed, though the northern slope of Butman Hill drains into the Piscataqua River (Coastal watershed) via tributaries to the Exeter River. There are three named brooks in town — Colby, Hog Hill and Kelly. The Town has approximately 1,753 acres of wetland soils (poorly or very poorly drained). Floodplains cover 883 acres, Figure 2.

Floodplains for this *Plan* are defined as the 100-year and 500-year flood hazard zones, as depicted on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Hampstead maintains participation in the National Flood Insurance Program administered by FEMA. Development should be located away from wetlands and floodplains whenever possible. The filling of wetlands for building construction not only destroys wetlands and their numerous benefits, but may also lead to groundwater contamination. Building within a flood zone may also reduce the floodplain's capacity to absorb and retain water during periods of excessive precipitation and runoff. Moreover, in regard to building within floodplains, contamination may result from flood damage to septic systems.

Current and Future Development Trends

Current Development is predicated on the Town of Hampstead's Zoning Ordinance. The Town is divided into eight zoning districts encompassing residential and commercial, as well as overlays zones for recreation and camping, historic district, flood hazard and wetland conservation. For more information on these specific zones see the Hampstead Zoning Ordinance. Map 1- Existing Land Use shows current land use as defined by Hampstead's current Existing Land Use chapter of the Master Plan.

Commercial growth is expected to continue to be concentrated along Routes 111 and 121 and to include the renovation and replacement of some businesses in the downtown historic district. From 2013 through 2017, the Town issued 958 permits for residential and commercial construction.

Map 1 – Existing Land Use

CHAPTER III. - NATURAL HAZARDS IN THE TOWN OF HAMPSTEAD

What are the Hazards?

The first step in planning for natural hazard mitigation is to identify hazards that may affect the Town. Some communities are more susceptible to certain hazards (i.e., flooding near rivers, hurricanes on the seacoast, etc.). The Town of Hampstead is prone to several types of natural hazards. These hazards include: flooding, hurricanes or other high-wind events, severe winter weather, wildfires, earthquakes, drought, and extreme temperatures. Other natural hazards can and do affect the Town of Hampstead, but these were the hazards prioritized by the Committee for mitigation planning. These were the hazards that were considered to occur with regularity and/or were considered to have high damage potential and are discussed below.

Natural hazards that are included in the State's Hazard Mitigation Plan that are not included in the in this Plan Update include: landslide, subsidence, radon and avalanche. Subsidence and avalanche are rated by the State as having Low and No risk in Rockingham County, respectively; due to this they were left out of the Plan. Hampstead has no record of landslides and little chance of one occurring that could possibly damage property of cause injury and so landslides were not included in this Plan. The State's Plan indicates that Rockingham County is at Moderate risk to radon; this hazard was not included in the Plan. When compared with natural hazards that could be potentially devastating to the Town, such as flooding and severe winter weather, it was not considered an effective us of the Committee time to include radon in the Plan at this time.

The hazard profiles below include a description of the natural hazard, the geographic location of each natural hazard (if applicable), the extent of the natural hazard (e.g. magnitude or severity), probability, past occurrences, and community vulnerability. Past occurrences of natural hazards were mapped on Map 2: Past and Future Hazards. Community vulnerability identifies the specific areas, general type of structures, specific structures, or general vulnerability of the Town of Hampstead to each natural hazard. Probability was defined as high, a roughly 66-100% chance of reoccurrence; medium, roughly a 33-66% chance of reoccurrence; and low, roughly a 0-33% of reoccurrence.

Flooding

Description - Floods are defined as a temporary overflow of water onto lands that are not normally covered by water. Flooding results from the overflow of major rivers and tributaries, storm surges, and/ or inadequate local drainage. Floods can cause loss of life, property damage, crop/livestock damage, and water supply contamination. Floods can also disrupt travel routes on roads and bridges.

Inland floods are most likely to occur in the spring due to the increase in rainfall and melting of snow; however, floods can occur at any time of the year. A sudden thaw in the winter or a major downpour in the summer can cause flooding because there is suddenly a lot of water in one place with nowhere to go.

100-year Floodplain Events - Floodplains are usually located in lowlands near rivers, and flood on a regular basis. The term 100-year flood does not mean that flood will occur once every 100

years. It is a statement of probability that scientists and engineers use to describe how one flood compares to others that are likely to occur. It is more accurate to use the phrase "1% annual chance flood". What this means is that there is a 1% chance of a flood of that size happening in any year.

Erosion and Mudslides - Erosion is the process of wind and water wearing away soil. Typically, in New Hampshire, the land along rivers is relatively heavily developed. Mudslides may be formed when a layer of soil atop a slope becomes saturated by significant precipitation and slides along a more cohesive layer of soil or rock. Erosion and mudslides become significant threats to development during floods. Floods speed up the process of erosion and increase the risk of mudslides.

Rapid Snow Pack Melt - Warm temperatures and heavy rains cause rapid snowmelt. Quickly melting snow coupled with moderate to heavy rains are prime conditions for flooding.

River Ice Jams - Rising waters in early spring often breaks ice into chunks, which float downstream and often pile up, causing flooding. Small rivers and streams pose special flooding risks because they are easily blocked by jams. Ice in riverbeds and against structures presents significant flooding threats to bridges, roads, and the surrounding lands.

Dam Breach and Failure - Dam failure results in rapid loss of water that is normally held by the dam. These kinds of floods are extremely dangerous and pose a significant threat to both life and property.

There are three dams within or immediately adjacent to Hampstead's boundaries, these are: Shop Pond Dam, Sunset Lake Dam and a privately-owned dam, known as the Uptagrafft dam on Route 111.

Severe Storms - Flooding associated with severe storms can inflict heavy damage to property. Heavy rains during severe storms are a common cause of inland flooding.

Location - Hampstead is vulnerable to flooding in several locations. Generally, the Town is at risk within the Flood Zones identified by FEMA on Flood Insurance Rate Maps (FIRM). As can be seen in Figure 4 in Chapter 2, Hampstead has two major flood zones: A and AE. The AE zones in Hampstead are surrounding the Island Pond and Wash Pond. A small AE designated stream encroaches on Rt. 111 and crosses under Marilyn Park Drive and Sherry Lane. The A zones are associated with three large wetland complexes, one in the northwest corner of town, another associated with Hog Hill Pond, and another associated with Mill Swamp. There are also several areas susceptible to flooding that are not within these flood zones, these areas are listed below and displayed on Map 2: Past and Future Hazards.

Extent - The extent of the flood zones can be seen in Map 2: Past and Future Hazards. This area includes FIRM Zones A and X, as well as, areas of locally chronic flood problems.

Probability - High.

Past Occurrence - Flooding is a common hazard for the Town of Hampstead. Several locations were identified by the Committee as areas of chronic reoccurring flooding or high potential for future flooding, as listed above and identified on Map 2.

Community Vulnerability - Flooding is most likely to impact structures located in the flood zones, as well as the following roads:

- Route 111
- Route 121
- Cambridge Road
- Kimberley Road
- Page Lane
- Andrew Circle
- Wheel Wright Road
- Red Coat Drive
- Gingerbread Lane
- Longview Drive
- Millshore Drive
- Governors Island Road
- Marilyn Park Drive
- Sherry Lane
- Kent's Farm Road

National Flood Insurance Program (NFIP) - In 1968, Congress created the National Flood Insurance Program (NFIP) in response to the rising cost of taxpayer funded disaster relief for flood victim and the increasing amount of damage caused by floods. The Federal Insurance and Mitigation Administration (FIMA) a component of the Federal Emergency Management Agency (FEMA) manages the NFIP and oversees the floodplain management and mapping components of the program.

Communities participate in the NFIP by adopting and enforcing floodplain management ordinances to reduce flood damage. In exchange, the NFIP makes federally subsidized flood insurance available to homeowners, renters, and business owners in these communities. Flood insurance, Federal Grants and loans, Federal disaster assistance and federal mortgage insurance is unavailable for the acquisition or construction of structures located in the floodplain shown on the NFIP maps for those communities that do not participate in the program.

To get secure financing to buy, build or improve structures in the Special Flood Hazard areas, it is legally required by federal law to purchase flood insurance. Lending institutions that are federally regulated or federally insured must determine if the structure is in the SFHA and must provide written notice requiring flood insurance. Flood insurance is available to any property owner located in a community participating in NFIP.

Repetitive Loss Properties - A specific target group of repetitive loss properties is identified and serviced separately from other NFIP policies by the Special Direct Facility (SDF). The target

group includes every NFIP insured property that, since 1978 and regardless of any change(s) of ownership during that period, has experienced four or more paid losses, two paid flood losses within a 10-year period that equal or exceed the current value of the insured property, or three or more paid losses that equal or exceed the current value of the insured property, regardless of any changes of ownership, since the buildings construction or back to 1978. Target group policies are afforded coverage, whether new or renewal, only through the SDF.

The FEMA Regional Office provides information about repetitive loss properties to State and local floodplain management officials. The FEMA Regional Office may also offer property owners building inspection and financial incentives for undertaking measures to mitigate future flood losses. These measures include elevating buildings from the flood area, and in some cases drainage improvement projects. If the property owners agree to mitigation measures, their property may be removed from the target list and would no longer be serviced by the SDF.

Table 1: Hampstead NFIP Policy and Loss Statistics

Policies in force	Insurance in Force	Number of Paid Losses (since 1978)	Total Losses Paid (Since 1978)	
27	\$5,365,800	9	\$80,471.00	
Source: FEMA Policy and claims database, as of March, 2018				

Hampstead NFIP Repetitive Flooding Losses - Hampstead joined the Regular Program of the NFIP on June 16, 1993. As of March 2018, Hampstead has had 1 repetitive loss property according to New Hampshire Office of Strategic Initiatives records. This is determined by any repetitive damage claims on those properties that hold flood insurance through the NFIP.

Floodplain Management Goals/Reducing Flood Risks - A major objective to floodplain management is to continue participation in the NFIP. Communities that agree to manage Special Flood Hazard Areas shown on NFIP maps participate in the NFIP by adopting minimum standards. The minimum requirements are the adoption of the floodplain Ordinances and Subdivision/Site Plan Review requirements for land designated as Special Flood Hazard Areas. Under Federal Law, any structure located in the floodplain is required to have flood insurance. Federally subsidized flood insurance is available to any property owner located in a community participating in the NFIP. Communities that fail to comply with the NFIP will be put on probation and/or suspended. Probation is a first warning where all policy holders receive a letter notifying them of a \$50 increase in their insurance. In the event of suspension, the policyholders lose their NFIP insurance and are left to purchase insurance in the private sector, which is of significantly higher cost. If a community is having difficulty complying with NFIP policies, FEMA is available to meet with staff and volunteers to work through the difficulties and clear up any confusion before placing the community on probation or suspension.

Potential Administrative Techniques to Minimize Flood Losses in Hampstead - A potential step in mitigating flood damage is participating in NFIP. Hampstead continues to consistently enforce

NFIP compliant policies to continue its participation in this program and has effectively worked within the provisions of NFIP. Below is a list of actions Hampstead should consider, or continue to perform, to comply with NFIP:

- Participate in NFIP training offered by the State and/or FEMA (or in other training) that addresses flood hazard planning and management;
- Establish Mutual Aid Agreements with neighboring communities to address administering the NFIP following a major storm event;
- Address NFIP monitoring and compliance activities;
- Revise/adopt subdivision regulations, erosion control regulations, board of health regulations to improve floodplain management in the community;
- Prepare, distribute or make available NFIP insurance and building codes explanatory pamphlets or booklets;
- Identify and become knowledgeable of non-compliant structures in the community;
- Inspect foundations at time of completion before framing to determine if lowest floor is at or above Base Flood Elevation (BFE), if they are in the floodplain;
- Require the use of elevation certificates;
- Enhance local officials, builders, developers, local citizens and other stakeholders' knowledge of how to read and interpret the FIRM;
- Work with elected officials, the state and FEMA to correct existing compliance issues and prevent any future NFIP compliance issues through continuous communications, training and education.

Hurricane-High Wind Events

Description - Significantly high winds occur especially during hurricanes, tornadoes, winter storms and thunderstorms. Falling objects and downed power lines are dangerous risks associated with high winds. In addition, property damage and downed trees are common during high wind occurrences.

Hurricanes - A hurricane is a tropical cyclone in which winds reach speeds of 74 miles per hour or more and blow in a large spiral around a relatively calm center. The eye of the storm is usually 20-30 miles wide and may extend over 400 miles. High winds are a primary cause of hurricane-inflicted loss of life and property damage. The Saffir–Simpson hurricane wind scale (SSHWS), or the Saffir–Simpson hurricane scale (SSHS) for short, classifies hurricanes into five categories distinguished by the intensities of their sustained winds. To be classified as a hurricane, a tropical cyclone must have maximum sustained winds of at least 74 mph, Category 1. The highest classification in the scale, Category 5, is reserved for storms with winds exceeding 156 mph. The Saffir/Simpson Hurricane Scale is included in Appendix C.

Tornadoes - A tornado is a violent windstorm characterized by a twisting, funnel shaped cloud. They develop when cool air overrides a layer of warm air, causing the warm air to rise rapidly. The atmospheric conditions required for the formation of a tornado include great thermal instability, high humidity and the convergence of warm, moist air at low levels with cooler, drier

air aloft. Most tornadoes remain suspended in the atmosphere, but if they touch down they become a force of destruction.

Tornadoes produce the most violent winds on earth, at speeds of 280 mph or more. In addition, tornadoes can travel at a forward speed of up to 70 mph. Damage paths can be in excess of one mile wide and 50 miles long. Violent winds and debris slamming into buildings cause the most structural damage. The Enhanced Fujita Scale is the standard scale for rating the severity of a tornado as measured by the damage it causes. A tornado is usually accompanied by thunder, lightning, heavy rain, and a loud "freight train" noise. In comparison with a hurricane, a tornado covers a much smaller area but can be more violent and destructive.

Severe Thunderstorms - All thunderstorms contain lightning. During a lightning discharge, the sudden heating of the air causes it to expand rapidly. After the discharge, the air contracts quickly as it cools back to ambient temperatures. This rapid expansion and contraction of the air causes a shock wave that we hear as thunder, which can damage building walls and break glass.

Lightning - Lightning is a giant spark of electricity that occurs within the atmosphere or between the atmosphere and the ground. As lightning passes through air, it heats the air to a temperature of about 50,000 degrees Fahrenheit, considerably hotter than the surface of the sun. Lightning strikes can cause death, injury and property damage.

Hail - Hailstones are balls of ice that grow as they're held up by winds, known as updrafts, which blow upwards in thunderstorms. The updrafts carry droplets of supercooled water – water at a below freezing temperature – but not yet ice. The supercooled water droplets hit the balls of ice and freeze instantly, making the hailstones grow. The faster the updraft, the bigger the stones can grow. Most hailstones are smaller in diameter than a dime, but stones weighing more than a pound have been recorded. Details of how hailstones grow are complicated, but the results are irregular balls of ice that can be as large as baseballs, sometimes even bigger. While crops are the major victims, hail is also a hazard to vehicles and windows.

Location - Hurricane events are more potentially damaging with increasing proximity to the coast. Hampstead's proximity to the Atlantic Coast makes hurricanes and high wind events severe threats. For this *Plan*, high-wind events were considered to have an equal chance of affecting any part of the Town of Hampstead, however Holiday Lane, West Road, and Wash Pond at Freedom Hill were identified by the committee as an area of town at risk of high wind events.

Extent – Hurricane strength is measured using the Saffir-Simpson scale, located in the appendix of this Plan. Hampstead is located within Zone II hurricane-susceptible region (indicating a design wind speed of 160 mph). From 1950 to 2018 Rockingham County was subject to 9 tornado events, these included 2 type F0 (Gale Tornado, 40-72 mph), 2 type F1 (Moderate Tornado, 73-112 mph), 4 type F2 (Significant Tornado, 113-157 mph) and 1 type F3 (Severe Tornado, 158-206 mph). Type 3 tornados can cause severe damage including tearing the roofs and walls from well-constructed homes, trees can be uprooted, trains over-turned, and cars lifted off the ground and thrown. Between 1900 and 2018 2 hurricanes have made landfall in New Hampshire, a category 1 and a category 2.

Probability -High. The State of New Hampshire's Multi-Hazard Mitigation Plan Update 2013 rates Rockingham County with high likelihood of hurricane, tornado and "Nor'-Easters" events. Also, it rates the risk of downbursts, lightning and hail events as moderate.

Past Occurrence – Between 1635 and 2018 14 hurricanes have impacted the State of New Hampshire. The worst of these occurred on September 21, 1938, with wind speeds of up to 186 mph in MA and 138 mph elsewhere. Thirteen of 494 people killed by this storm were residents of New Hampshire. The Storm caused \$12,337,643 in damages (1938 dollars), timber not included. Hurricanes Sandy and Irene created areas of localized flooding in Hampstead and power loss. High wind events in 2010, 2014 and 2016 resulted in extensive power outages, downed wires and trees. Tornadoes have not impacted Hampstead in recent memory.

Community Vulnerability – The Committee determined that high wind and heavy rain associated with hurricanes can impact every neighborhood in Hampstead before, during and after the storm, resulting in downed trees, flooding of ponds, rivers, streams, roads and basements, and damage to home, businesses and infrastructure.

Severe Winter Weather

Description – Severe winter weather in the form of heavy snow storms, ice storms and Nor'easters are a threat to the community with subzero temperatures from extreme wind chill and storms causing low visibility for commuters. Heavy snow loads from storms are known to collapse buildings. Ice storms disrupt power and communication services. Extreme cold affects vulnerable populations, including the elderly.

Heavy Snow Storms - A winter storm can range from moderate snow to blizzard conditions. Blizzard conditions are considered blinding wind-driven snow over 35 mph that lasts several days. A severe winter storm deposits four or more inches of snow during a 12-hour period or six inches of snow during a 24-hour period.

Ice Storms - An ice storm involves rain, which freezes upon impact. Ice coating at least one-fourth inch in thickness is heavy enough to damage trees, overhead wires and similar objects. Ice storms also often produce widespread power outages.

Nor'easter - A Nor'easter is large weather system traveling from South to North passing along or near the seacoast. As the storm approaches New England and its intensity becomes increasingly apparent, the resulting counterclockwise cyclonic winds impact the coast and inland areas form a Northeasterly direction. The sustained winds may meet or exceed hurricane force, with larger bursts, and may exceed hurricane events by many hours (or days) in terms of duration.

Location - Severe winter weather events have an equal chance of affecting any part of the Town of Hampstead.

Extent - Large snow events in Southeastern New Hampshire can produce 30 inches of snow. Portions of central New Hampshire recorded snowfalls of 98" during one slow moving storm in

February of 1969. Ice storms occur with regularity in New England. The Sperry-Piltz ice accumulation scale is found in the Appendix of this Plan. Seven severe ice storms have been recorded that affected New Hampshire since 1929. These events caused disruption of transportation, loss of power and millions of dollars in damage.

Probability - High. The State of New Hampshire's Multi-Hazard Mitigation Plan Update 2013 rates Rockingham County with high likelihood of heavy snows and ice storms.

Past Occurrence – Hampstead has been impacted by six severe winter storms in the past five years. A storm on January 2, 2009 resulted in the removal of tree debris and wind-blown debris. A storm on March 29, 2010 caused flooding that damaged roads and culverts. The "Halloween storm" on October 31, 2011 resulted in widespread power outages, fallen trees, and closed roads. A severe winter storm struck the region on March 19, 2013 with heavy snow fall resulting in 48 hours of snow removal. A severe winter storm in 2015 and two Nor'easters in 2018 required extensive snow removal and removal of fallen trees.

Community Vulnerability - Severe winter weather has struck Hampstead and every other community in the region on an annual basis in recent memory. The Committee determined that heavy snow, strong and gusty winds, and frigid temperatures can impact all parts of town equally, resulting in downed trees and power lines, extended power outages, and unsafe driving condition. Extended power outages and the resulting loss of heat in homes of elderly residents are of concern. Rapid snow melt after severe winter weather can result in flooding of rivers and streams, posing risk to roads and structures. The Committee identified the elderly and vulnerable populations, utility lines and towers, and trees at greatest risk from severe winter weather.

Wildfire

Description - Wildfire is defined as an uncontrolled and rapidly spreading fire, including grass and forest fires. A forest fire is an uncontrolled fire in a woody area. They often occur during drought and when woody debris on the forest floor is readily available to fuel the fire. Grass fires are uncontrolled fires in grassy areas.

Location - The Committee identified the conservation areas between West Road and Stage Road at-risk to wildfires, which are also located on Map 2 Past and Future Hazards.

Extent - A wildfire in the Town of Hampstead is unlikely, but if a crown fire were to occur it could be very damaging to several small sections of Town, such as the Town Forest. A large grass fire could threaten structures and neighborhoods building near large open areas. The Wildland-Urban Interface Scale, a tool to quantify the expected severity of wildfire events in developed areas, is included in Appendix K.

Probability - Moderate. The State of New Hampshire's Multi-Hazard Mitigation Plan Update 2013 rates Rockingham County with moderate risk to wildfires.

Past Occurrence - The majority of wildfires in Hampstead are minor brush fires. No Large fires have occurred within recent memory.

Community Vulnerability - The Committee determined that all forested and open areas in Hampstead prone to wildfires, with the threat increasing during periods of drought. The Committee summarized the threat as follows:

- Structures located near large open vegetated areas prone to lightning strikes
- Vulnerability increases during drought events
- Tree debris created by high wind and winter storm events

Earthquakes

Description — Seismic activity including landslides and other geologic events. Geologic events are often associated with California, but New England is considered a moderate risk earthquake zone. An earthquake is a rapid shaking of the earth caused by the breaking and shifting of rock beneath the earth's surface. Earthquakes can cause buildings and bridges to collapse, disrupt gas, electric and phone lines, and often cause landslides, flash floods, fires, and avalanches. Larger earthquakes usually begin with slight tremors but rapidly take the form of one or more violent shocks, and end in vibrations of gradually diminishing force called aftershocks. The underground point of origin of an earthquake is called its focus; the point on the surface directly above the focus is the epicenter. The magnitude and intensity of an earthquake is determined by the use of scales such as the Richter Magnitude Scale, located in the Appendix of this Plan.

Location – An earthquake has an equal chance of affecting all areas on Hampstead.

Extent - New England is particularly vulnerable to the injury of its inhabitants and structural damage because of our built environment. Few New England States currently include seismic design in their building codes. Massachusetts introduced earthquake design requirements into their building code in 1975 and Connecticut very recently did so. However, these specifications are for new buildings, or very significantly modified existing buildings only. Existing buildings, bridges, water supply lines, electrical power lines and facilities, etc. have rarely been designed for earthquake forces (New Hampshire has no such code specifications).

Probability - Moderate. The State of New Hampshire's Multi-Hazard Mitigation Plan 2013 ranks all of the Counties in the State with at moderate risk to earthquakes.

Past Occurrence - Large earthquakes have not affected the Town of Hampstead within recent memory.

Community Vulnerability - The Committee determined that earthquakes do not pose a frequent threat to Hampstead, but if one were to occur the most vulnerable structures include dams, bridges, brick structures, infrastructure and utility lines, as well as secondary hazards such as fire, power outages or a hazardous material leak or spill.

Drought

Description - Drought is a period of unusually constant dry weather that persists long enough to cause deficiencies in water supply (surface or underground). Droughts are slow-onset hazards that can severely affect municipal water supplies, crops, recreation resources, and wildlife. If drought conditions extend over several years, the direct and indirect economic impacts can be significant. High temperatures, high winds, and low humidity can worsen drought conditions and make area more susceptible to wildfire. In addition, human actions and demands for water resources can accelerate drought-related impacts.

Location – The Committee determined that drought poses risks to water supplies throughout Town, both private and municipal. Risks of wildfire associate with drought conditions are greatest in forested and open grassland areas.

Extent - Although New Hampshire is typically thought of as a water-rich state, there are times the demand for water can be difficult to meet. A combination of increased population and extended periods of low precipitation can cause reduced water supplies. Drought can impact Hampstead after extended periods with limited rain and snowfall, often for several months.

Probability - Low.

Past Occurrence - The State of New Hampshire Multi-Hazard Mitigation Plan Update 2013 rates Rockingham Count at low risk for drought. However, drought conditions persisted across southern New Hampshire for much of 2016, resulting in private wells going dry. Hampstead Area Water made water available to residents at the Fire Station.

Community Vulnerability - The Committee determined that water supply and fire flow are the most at risk due to drought conditions.

Extreme Temperatures

Description - Extreme temperatures are typically recognized as conditions where temperatures consistently stay ten degrees or more above a region's average high temperature for a 24-72 hour (extreme heat) or stay ten degrees or more below a region's average low temperature for a 24-72-hour period (extreme cold). Fatalities can result from extreme temperatures, as they can push the human body beyond its limits.

Location – Extreme temperatures can affect all areas of Hampstead.

Extent - Extreme heat events impact Hampstead for 2-3 days each summer, and extreme cold events impact the Town 5-7 days each winter. FEMA's Heat Index measures a number in degrees Farenheit that tells how hot it feels when relative humidity is added to the air temperature.

Probablility - High.

Past Occurrence - Annually

Community Vulnerability - The Committee determined that all parts of Hampstead are at risk of impacts associated with extreme temperatures. The young, elderly and vulnerable populations are especially vulnerable to heat stroke. The EMD maintains a list of these populations, including addresses for homes, day care centers, and congregate care facilities.

Table 2: State of New Hampshire Presidentially Declared Disasters (DR) and Emergency Declarations (EM) 1982-2018 Source: State of NH Multi-Hazard Mitigation Plan, 2013 Update and FEMA

Date	Event	FEMA DR	Program	Amount	Counties Declared
Declared					
08/27/86	Severe storms/flooding	FEMA-771-DR	PA	\$1,005,000	Cheshire and Hillsborough
04/16/87	Severe storms/flooding	FEMA-789-DR	PA/IA	\$4,888,889	Carroll, Cheshire, Grafton, Hillsborough, Merrimack, Rockingham, and Sullivan
08/29/90	Severe storms/winds	FEMA-876-DR	PA	\$2,297,777	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, and Sullivan
09/09/91	Hurricane	FEMA-917-DR	PA	\$2,293,449	Statewide
11/13/91	Coastal storm/flooding	FEMA-923-DR	PA/IA	\$1,500,000	Rockingham
03/16/93	Heavy snow	FEMA-3101-DR	PA	\$832,396	Statewide
01/03/96	Storms/floods	FEMA-1077-DR	PA	\$2,220,384	Carroll, Cheshire, Coos, Grafton, Merrimack, and Sullivan
10/29/96	Severe storms/flooding	FEMA-1144-DR	PA	\$2,341,273	Grafton, Hillsborough, Merrimack, Rockingham, Strafford, and Sullivan
01/15/98	Ice storm	FEMA-1199-DR	PA/IA	\$12,446,202	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, Strafford, and Sullivan
07/02/98	Severe storms	FEMA-1231-DR	PA/IA	\$3,420,120	Belknap, Carroll, Grafton, Merrimack, Rockingham, and Sullivan
10/18/99	Hurricane/tropical storm Floyd	FEMA-1305-DR	PA	\$750,133	Belknap, Cheshire, and Grafton
3/2001	Snow emergency	FEMA-3166-EM	PA	\$4,500,000	Cheshire, Coos, Grafton, Hillsborough, Merrimack, Rockingham, and Strafford
2/17/2003 - 2/18/2003	Snow emergency	FEMA-3177-EM	PA	\$3,000,000	Cheshire, Hillsborough, Merrimack, Rockingham, and Strafford
09/12/03	Severe storms/flooding	FEMA-1489-DR	PA	\$1,300,000	Cheshire and Sullivan
03/11/03	Snow emergency	FEMA-3177-EM	PA	\$3,000,000	Cheshire, Hillsborough, Merrimack, Rockingham, and Strafford

01/15/04	Snow emergency	FEMA-3193-EM	PA	\$3,200,000	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, and Sullivan
03/30/05	Snow emergency	FEMA-3207-EM	PA	\$4,654,738	Belknap, Carroll, Cheshire, Grafton, Hillsborough, Merrimack, Rockingham, Strafford, and Sullivan
03/30/05	Snow emergency	FEMA-3208-EM	PA	\$1,417,129	Carroll, Cheshire, Coos, Grafton, and Sullivan
04/28/05	Snow emergency	FEMA-3211-EM	PA	\$2,677,536	Carroll, Cheshire, Hillsborough, Rockingham, and Sullivan
10/26/05	Severe storm/flooding	FEMA-1610-DR	PA/IA	\$14,996,626	Belknap, Cheshire, Grafton, Hillsborough, Merrimack, and Sullivan
05/31/06	Severe storm/flooding	FEMA-1643-DR	PA/IA	\$17,691,586	Belknap, Carroll, Grafton, Hillsborough, Merrimack, Rockingham, and Strafford
4/15/2007 - 4/23/2007	Severe storm/flooding	FEMA-1695-DR	PA/IA	\$27,000,000	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, Rockingham, Strafford, and Sullivan
08/11/08	Severe storms/tornado/flooding	FEMA-1782-DR	PA	\$1,691,240	Belknap, Carroll, Merrimack, Rockingham, and Strafford
09/05/08	Severe storms/flooding	FEMA-1787-DR	PA	\$4,967,595	Belknap, Coos, and Grafton
10/03/08	Severe storms/flooding	FEMA-1799-DR	PA	\$1,050,147	Hillsborough and Merrimack
12/11/08	Severe winter storm	FEMA-3297-EM	DF A/P A	\$900,000	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, Rockingham, Strafford, and Sullivan
01/02/09	Severe winter storm	FEMA-1812-DR	DF A/P A	\$19,789,657	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, Rockingham, Strafford, and Sullivan
03/29/10	Severe winter storm	FEMA-1892-DR	PA	\$9,103,138	Merrimack, Rockingham, Strafford, and Sullivan
05/12/10	Severe winter storm	FEMA-1913-DR	PA	\$3,057,473	Hillsborough and Rockingham
07/22/11	Severe storms/flooding	FEMA-4006-DR	PA	\$1,664,140	Coos and Grafton

09/03/11	Tropical storm Irene	FEMA-4026-DR	PA/IA	\$11,101,752	Belknap, Carroll, Coos, Grafton, Merrimack, Strafford, and Sullivan
12/07/11	October Nor'easter	FEMA-4049-DR	PA	\$4,411,457	Hillsborough and Rockingham
06/18/12	Severe storms/flooding	FEMA-4065-DR	PA	\$3,046,189	Cheshire
10/30/12	Hurricane Sandy	DR-4095 EM-3360	PA DFA	\$2,132,376	Belknap, Carroll, Cheshire, Coos, Grafton, Hillsborough, Merrimack, Rockingham, Strafford, and Sullivan
2/8/2013 - 2/10/2013	Severe storm/blizzard	DR-4105	PA	\$6,127,598	Belknap, Carroll, Cheshire, Hillsborough, Merrimack, Strafford, and Rockingham
6/26/2013 – 7/3/2013	Severe storms/flooding	DR-4139	PA	\$6,389,705	Cheshire, Sullivan, and Grafton
1/26/2015 – 1/29/2015	Severe winter storm/snowstorm	DR-4209	PA	\$4,607,527	Strafford, Rockingham, and Hillsborough
3/14/2017 – 3/15/2017	Severe winter storm/snowstorm	DR-4316	PA	\$80,306.55	Belknap and Carroll
1/1/2017 – 1/2/2017	Severe storms/flooding	DR-4329	PA	NA	Grafton and Coos
10/29/2017 11/1/2017	Severe Storm/flooding	DR-4355	PA	NA	Sullivan, Merrimack, Belknap, Carroll, Grafton, Coos

Program Key: PA: Public Assistance IA: Individual Assistance DFA: Direct Federal Assistance

Map 2: Insert Past and Future Hazards

CHAPTER IV – CRITICAL FACILITIES

The Critical Facilities List for the Town of Hampstead has been identified by Hampstead's Hazard Mitigation Committee. The Critical Facilities List has been broken up into four categories. The first category contains facilities needed for Emergency Response in the event of a disaster. The second category contains Non-Emergency Response Facilities that have been identified by the committee as non-essential. These are not required in an emergency response event but are considered essential for the everyday operation of Hampstead. The third category contains Facilities/Populations that the committee wishes to protect in the event of a disaster. The fourth category contains Potential Resources, which can provide services or supplies in the event of a disaster. Map 3: Critical Facilities at the end of this Chapter identifies the location of the facilities and the evacuation routes. A detailed description of critical facilities can be found in Tables 3 - 6.

Table 3: Category 1 - Emergency Response Services and Facilities

Map ID#			
Red	Critical Facility Name	Address	Comments
		45 Danville Road	
1	MedFlight Landing Zone 1	Hampstead Health and Fitness	Emergency Response
		Harper Ridge Road	
2	MedFlight Landing Zone 2	Woodland Pond	Emergency Response
3	MedFlight Landing Zone 3	NH Route 121 Park and Ride	Emergency Response
4	MedFlight Landing Zone 4	Depot Road Field	Emergency Response
		26 North Salem Road	
5	MedFlight Landing Zone 5	Island Pond Baptist Church	Emergency Response
	Hampstead Police		
6	Department	30 Veterans Way	Emergency Response
	Hampstead Fire		
7	Department	17 Littels Lane	Emergency Response
	East Hampstead Fire		
8	Station	East Main Street	Emergency Response
	Hampstead Highway		
9	Department	NH Route 121	Emergency Response
10	Hampstead Hospital	218 East Road	Emergency Response
11	Hampstead Health	45 Danville Road	Emergency Response
12	Cell Tower	Colonial Drive	Emergency Response
13	Cell Tower	Gigante Drive	Emergency Response

<u>Table 4: Category 2 - Non-Emergency Response Facilities:</u>

The town has identified these facilities as non-emergency facilities; however, they are considered essential for the everyday operation of Hampstead.

Map ID# Yellow	Critical Facility Name	Description	Comments
1	Hydrant	North Zone	Infrastructure
2	Hydrant	Seasonal	Infrastructure
3	Hydrant	Pressurized	Infrastructure
4	Hydrant	South Zone	Infrastructure
5	Bridge	Governor Island Road	Infrastructure
6	Wash Pond Dam	Dam/NH Route 121	Infrastructure
7	Shop Pond Dam	Dam/NH Route 121	Infrastructure
8	Smith Water Tank	Water Supply	Infrastructure

<u>Table 5: Category 3 - Facilities/Populations to Protect:</u>

The third category contains people and facilities that need to be protected in event of a disaster.

Map ID#			
Green	Critical Facility Name	Address	Comments
1	Hampstead Academy	320 East Road	School
2	Central School	21 Emerson Avenue	School
3	Middle School	28 School Street	School
4	Public Library	9 Mary E. Clark Drive	Library
5	Public Library	9 Mary E. Clark Drive	Library
6	East Hampstead Post Office	59 Colby Corner	Post office
7	Hampstead Post Office	220 Main Street	Post Office
8	All Our Children's House	144 East Road	Child Care
	Ages and Stages Learning		
9	Center	499 Main Street	Child Care
10	Beginnings and Beyond	320 Sandown Road #10	Child Care
44	Brenner Building at	222.5	
11	Hampstead Academy	320 East Road	Child Care
	First Impressions Learning		
12	Center	472 NH Route 111	Child Care
13	Kid's Krossroads	15 Emmer Road	Child Care
14	Mudpies and Make Believe	266 East Main Street	Child Care
15	Preschool Learning Center	35 Hazel Drive	Child Care
16	Stepping Stones School	61 Main Street	Child Care
17	YMCA's Schools Out	21 Emerson Avenue	Child Care

18	Angel Pond Woods	Linden Drive	Elderly Housing
19	Emerson Village	Parkland Road	Elderly Housing
20	Congregational Church	61 Main Street	Religious Facility
21	Island Pond Baptist Church	26 North Salem Road	Religious Facility
	St. Christopher's Episcopal		
22	Church	187 East Road	Religious Facility
	East Hampstead Union		
23	Church	225 East Main Street	Religious Facility
24	Camp Tel Noar	167 Main Street	Campground
	Emerson Village and		
25	Campground	24 Amy Lane	Campground
26	Sunset Park Campground	104 Emerson Avenue	Campground
27	Cranberry Meadows	St. John's Lane	Condominium Complex
28	Lewis Lane Apartments	Lewis Lane	Apartment Complex
29	Village Green Apartments	Village Green Road	Apartment Complex
30	Phan Zone	142 NH Route 111	Indoor Recreation
31	Orgmat Chemicals	Starwood Drive	Hazardous Materials
32	Thunderline Z	11 Hazel Drive	Hazardous Materials
33	Governors Island	Governors Island Road	Fire Hazard
34	Boy Scout Mountain	Timberland Road	Residential
35	Sanborn Shores	57 Sanborn Road	Residential/Campground

Table 6: Category 4 - Potential Resources:

This category contains facilities that provide potential resources for services or supplies in the event of a natural disaster.

Map ID#			
Blue	Critical Facility Name	Address	Comments
1	Transfer Station	Kent Farm Road	Waste Disposal
2	Town Office	11 Main Street	Municipal Building
3	Memorial Gym	2 West Road	Indoor Recreation
4	Walgreen's	288 Sandown Road	Pharmacy
5	J & B Butcher	259 East Main Street	Groceries
6	Hannaford	305 Sandown Road	Pharmacy/Groceries
7	The Prime Butcher	201 NH Route 111	Groceries
8	XtraMart	416 Emerson Avenue	Fuel
9	111 Quick Stop	NH Route 111	Fuel
10	Center Market	10 Main Street	Fuel
11	Citgo	304 Sandown Road	Fuel

12	ECL Rentals	4 Colonial Drive	Equipment
13	Bennett Landscape Inc.	130 Main Street	Equipment
14	Mike's Landscaping	16 Woodridge Road	Equipment
	Wedgewood		
15	Weddings/Granite Rose	22 Garland Drive	Indoor Shelter
16	Saint Anne Parish	26 Emerson Avenue	Religious Facility
17	Towne Lube Express	546 NH Route 111	Equipment

Map 3: Critical Facilities Map

CHAPTER V. – POTENTIAL HAZARD DAMAGE

Identifying Vulnerable Facilities

It is important to determine which critical facilities are the most vulnerable and to estimate their potential loss. The first step is to identify the facilities most likely to be damaged in a hazard event. To do this, the location of critical facilities illustrated on Map 3 was compared to the location of various topographical elements, floodplains, roads, and water bodies using GIS (Geographic Information Systems). Vulnerable facilities were identified by comparing their location to possible hazard events. For example, all the structures within the 100-year and 500-year floodplains were identified and used in conducting the potential loss analysis for flooding.

Calculating the Potential Loss

The next step in completing the loss estimation involved assessing the level of damage from a hazard event on structures in Hampstead. For the purpose of estimating general losses, the total value for all structures in Hampstead in 2017, residential, commercial and industrial, was used, for a total of \$774,958,900.

The damage estimates are divided into two categories based on hazard types: hazards that are location specific (e.g. flooding), and hazards that could affect all areas of Hampstead equally, such as extreme temperatures. Damage estimates from hazards that could affect all of Hampstead equally are much rougher estimates, based on percentages of the total assessed value of all structures in the community. Damage estimates from hazards with a specific location are derived from the assessed values of the parcels within the hazard area. Assessing and tax map data were used to determine buildings at risk. After identifying the parcels and buildings that are at risk, the next step was to calculate a damage estimate for each potential hazard area. The following discussion summarizes the potential loss estimates due to natural hazard events.

<u>Flooding – Special Flood Hazard Zones</u> - The average replacement value was calculated by adding up the assessed values of all structures in the 100 and 500-year floodplains. Because of the scale and resolution of the FIRM maps and imagery this is only an approximation of the total structures located within the 100 and 500-year floodplains. The Federal Emergency Management Agency (FEMA) has developed a process to calculate potential loss for structures during flood. The potential loss was calculated by multiplying the replacement value by the percent of damage expected from the hazard event. Residential and non-residential structures were combined.

The costs for repairing or replacing bridges, railroads, power lines, telephone lines, and contents of structures are not included in this estimate. In addition, the figures used were based on buildings which are one or two stories high with basements.

The following calculation is based on eight-foot flooding and assumes that, on average, one or two-story buildings with basements receive 49% damage (Understanding Your Risks, Identifying Hazards and Estimating Losses, FEMA page 4-13):

Potential Structure Damage: 49% - Approximately 62 structures in the AE ZONE assessed at \$19,378,100 = \$9,495,269 potential damage. Approximately 31 structures in the A zone assessed at \$9,689,050 = \$4,747,635 potential damage

The following calculation is based on four-foot flooding and assumes that, on average, one or two-story buildings with basements receive 28% damage (Understanding Your Risks, Identifying Hazards and Estimating Losses, FEMA page 4-13):

Potential Structure Damage: 28% - Approximately 62 structures in the AE ZONE assessed at \$19,378,100 = \$5,425,868 potential damage. Approximately 31 structures in the A zone assessed at \$9,689,050 = \$2,712,934 potential damage.

The following calculation is based on two-foot flooding and assumes that, on average, one or two-story buildings with basements receive 20% damage (Understanding Your Risks, Identifying Hazards and Estimating Losses, FEMA page 4-13):

Potential Structure Damage: 20% - Approximately 62 structures in the AE ZONE assessed at \$19,378,100 = \$3,875,620 potential damage. Approximately 31 structures in the A zone assessed at \$9,689,050 = \$1,937,810 potential damage.

Several areas of Hampstead were identified as having high risk of flooding. These areas are identified in Chapter III and Map 2: Past and Future Hazards. Potential losses were also calculated for these at-risk areas in the same manner as those structures in the 100 and 500-year floodplains. These assessments are only based on the potential damages to building within the identified at-risk areas.

Hurricane/ High Wind Events

Hurricane - Hurricanes do affect the Northeast coast periodically. Since 1900, 2 hurricanes have made landfall in the State of New Hampshire. Due to the coastal location of the Town of Hampstead, hurricanes and storm surges present a real hazard to the community. Even degraded hurricanes or tropical storms could still cause significant damage to the structures and infrastructure of the Town of Hampstead. The assessed value of all residential and commercial structures in the Town of Hampstead, including exempt structures such as schools and churches, is \$774,958,900. Assuming 1% to 5% damage, a hurricane could result in \$7,749,589 to \$38,747,945 of structure damage.

Tornado - Tornadoes are relatively uncommon natural hazards in New Hampshire. On average, about six touch-downs each year. Damage largely depends on where the tornado strikes. If is strikes an inhabited area, the impact could be severe. In the State of New Hampshire, the total cost of tornadoes between 1950 and 1995 was \$9,071,389 (The Disaster Center). The assessed value of all residential and commercial structures in the Town of Hampstead, including exempt structures such as schools and churches, is \$774,958,900. Assuming 1% to 5% damage, a hurricane could result in \$7,749,589 to \$38,747,945 of structure damage.

Severe Lightning - The amount of damage caused by lightning will vary according to the type of structure hit and the type of contents inside. There is now record of monetary damages inflicted in the Town of Hampstead from lightning strikes.

Severe Winter Weather

Heavy Snowstorms - Heavy snowstorms typically occur during January and February. New England usually experiences at least one or two heavy snow storms with varying degrees of severity each year. Power outages, extreme cold and impacts to infrastructure are all effects of winter storms that have been felt in Hampstead in the past. All these impacts are a risk to the community, including isolation, especially of the elderly, and increased traffic accidents. Damage caused because of this type of hazard varies according to wind velocity, snow accumulation and duration. The assessed value of all residential and commercial structures in the Town of Hampstead, including exempt structures such as schools and churches, is \$774,958,900. Assuming 1% to 5% damage, a hurricane could result in \$7,749,589 to \$38,747,945 of structure damage.

Ice Storms - Ice storms often cause widespread power outages by downing power lines, making power lines at risk in Hampstead. They can also cause severe damage to trees. In 1998, an ice storm inflicted \$12,466,202 worth of damage to New Hampshire and in 2008 PSNH estimates the cost of power restoration effort estimated at \$75 million for the state of NH. Ice storms in Hampstead could be expected to cause damage ranging from a few thousand dollars to millions of dollars, depending on the severity of the storm.

Wildfire

The risk of fire is difficult to predict based on location. Forest fires are more likely to occur during years of drought. The area identified as at risk to wildfire (Map 2: Past and Future Hazards) by the Hazard Mitigation Committee is in the northern section of Town and includes the Town Forest. The assessed value of all residential and commercial structures in the Town of Hampstead, including exempt structures such as schools and churches, is \$774,958,900. Assuming 1% to 5% damage, a hurricane could result in \$7,749,589 to \$38,747,945 of structure damage.

Earthquakes

Earthquakes can cause buildings and bridges to collapse, disrupt gas, electric and phone lines and are often associated with landslides and flash floods. Four earthquakes in New Hampshire between 1924-1989 had a magnitude of 4.2 or more. Two of these occurred in Ossipee, one west of Laconia, and one near the Quebec border. If an earthquake were to impact the Town of Hampstead, underground lines would be susceptible. In addition, buildings that are not built to a high seismic design level would be susceptible to structural damage. The assessed value of all residential and commercial structures in the Town of Hampstead, including exempt structures such as schools and churches, is \$774,958,900. Assuming 1% to 5% damage, a hurricane could result in \$7,749,589 to \$38,747,945 of structure damage.

Drought

Extended drought can impact municipal water supplies, private drinking wells, and make vegetated areas more susceptible to wildfire (see above). The Town has no record of monetary damage in related to drought.

Extreme Temperatures

The Committee determined that all parts of town are at risk of impacts associated with extreme heat and cold. Young and elderly populations are particularly vulnerable and the EMD can direct vulnerable residents to heating and cooling stations.

CHAPTER VI – EXISTING HAZARD MITIGATION PROGRAMS

The next step involves identifying existing mitigation strategies for the hazards likely to affect the town and evaluate their effectiveness. This section outlines those programs and recommends improvements and changes to these programs to ensure the highest quality emergency service possible.

Table 7: Existing Hazard Mitigation Programs for the Town of Hampstead

Existing Protection	Protections Provided and Additional Comments	Responsible Local Agent	Effectiveness (Poor, Avg., Good)	Recommended Changes- Actions-Comments
2018 Zoning Ordinance	Contains a Wetland and Floodplain Ordinance that aims to limit development in areas that might be prone to flooding	Code Enforcement Officer	Good	Reviewed annually and updated as needed
NFIP	Development restriction in Special Flood Hazard Area (100- yr floodplain)	Code Enforcement Officer	Good	Reviewed annually to correspond with federal guidelines and town priorities.
2017 Subdivision Regulations and Site Plan Review Regulations	Contains a stormwater Regulation and Best Management Practices which were recently changed to reflect MS4 requirements. There is also an established technical review committee to review new development applications.	Planning Board	Good	Reviewed annually and updated as needed.
2003 Master Plan	Currently updating chapter within the Master Plan	Planning Board	Good	Reviewed annually and updated as needed.

Existing Protection	Protections Provided and Additional Comments	Responsible Local Agent	Effectiveness (Poor, Avg., Good)	Recommended Changes- Actions-Comments
Capital Improvement Program	Currently outdated and in need of an update	Planning Board	Poor	Update needed
2009 Building Codes	Current building Codes enforced.	Building Inspector/Code Enforcement Officer	Good	The code is in line with state and federal standards.
2016 Emergency Operations Plan	Was updated in 2009.	EMD	Good	The plan is updated regularly.
Emergency Services: Police Department	8 full-time officers and 11 part- time officers.	Police Chief	Good	Local and regional training are required for all emergency service personnel.
Emergency Services: Fire Department	4 full time fire fighters, 2 part time and 30 on call volunteer fire fighters	Fire Chief	Good	Local and regional training are required for all emergency service personnel.
Hampstead School District Crisis Management Plan	Comprehensive Plan to deal with emergencies including natural hazards within the schools. Plan includes spaces available to disaster victims; crisis management team members; guidelines for evacuating the building and site; and specific steps to take in the case of a natural disaster.	EMD/School Personnel	Good	Plan is updated annually.

Existing Protection	Protections Provided and Additional Comments	Responsible Local Agent	Effectiveness (Poor, Avg., Good)	Recommended Changes- Actions-Comments
Other School Emergency Management techniques	Hampstead Central School Emergency Evacuation Plan: Parent's Guide; Hampstead Central School Emergency Information	EMD/School Personnel	Good	All other techniques are reviewed and update regularly.
Back-up Power	Buildings in Town that have back-up generators include: The Fire Department, Police Department, Middle School, Town Garage, Hampstead Hospital, Emerson Village Community Center, St. Anne's Church, and Wedgewood Function Hall. Town also has 6 portable units.	EMD	Good	Back-up generators in several municipally and privately-owned buildings.
Highway department/ road agent /public works	Culvert maintenance, snow removal and hazard tree removal in cooperation with utility providers	Public Works Director	Good	Staff checks culverts annually and reviews program effectiveness as needed.
State of NH Reverse 911	Allows for effective response and can be used to deliver recorded emergency notifications	Emergency Management	Good	Reviewed annually to insure system works.

Existing Protection	Protections Provided and Additional Comments	Responsible Local Agent	Effectiveness (Poor, Avg., Good)	Recommended Changes- Actions-Comments
Public Outreach and Education	Town alerts and educated residents about threats from natural hazards and ways to mitigation threats via the Town's website, Cable Access TV, Police, Fire and Highway Departments' Facebook, electronic signs placed in strategic locations, and flyers at Town Hall	EMD, Town Department Heads	Good	Information in shared in an effective and timely manner.
Mutual Aid Agreements	Fire, Police, and Highway Departments participate in regional mutual aid agreements	Department Heads	Good	Mutual aid is cross border with MA

CHAPTER VIII – MITIGATION ACTIONS

The Action Plan was developed by analyzing the existing Town programs, the proposed improvements and changes to these programs. Additional programs were also identified as potential mitigation strategies. These potential mitigation strategies were ranked in five categories according to how they accomplished each item:

- Prevention
- Property Protection
- Structural Protection
- Emergency Services
- Public Information and Involvement

Table 8: List of Hazard Mitigation Strategies or Actions Developed by the Natural Hazard Mitigation Committee

Mitigation Strategies or Action	Mitigation Category	Hazard(s) Mitigated	Description	Status 2018: New/Completed/Deferred/ Removed
Define a culvert maintenance schedule and GPS culvert locations	Flooding	Prevention, Property Protection	Town DPW is continuing to define a culvert maintenance schedule for major culverts in town. This program will correspond well with MS4 requirements.	Completed
Review Dam Maintenance Schedule because Dam Breech would flood seasonal camp ground.	Flooding	Prevention	Project is still under review as time capacity and funding become available.	Completed
Drainage from School causing a flooding Problem on Timberlane Road. Culvert should be cleared to allow water to access detention pond.	Flooding	Prevention, Property Protection, Structural Protection	As potential grant or town funding becomes available this project will be acted upon.	Removed – no longer a hazard

Mitigation Strategies or Action	Mitigation Category	Hazard(s) Mitigated	Description	Status 2018: New/Completed/Deferred/ Removed
Keep Building Codes up to date to protect against earthquake, wind and winter storm damage	High Wind, Winter Storms, Earthquake	Prevention, Property Protection	Building inspector ensures town building code is up to date with state and federal guidelines.	Completed
Work with Power companies to remove hazard trees near power lines	High Winds, Winter Storms	Prevention	Town works with power companies to ensure electric lines remain clear of tree limbs.	Completed
Town purchase of cots and supplies for shelters	All Hazards Requiring use of a Shelter	Emergency Services	Emergency officials are seeking to purchase better, more usable cots.	Completed
Cable access channel for Education and Warning system	All Hazards	Public Information and Involvement, Emergency Services	Town will continue to utilize the local cable channel for issuing warnings with regard to emergency preparedness.	Completed
Encourage road connections rather than cul-de-sacs	All Hazards requiring emergency response.	Public Information and Involvement, Prevention	This strategy is used during plan reviews for new developments in town.	Deferred
Encourage underground utilities in new subdivision or when older buildings are updated.	High Winds and Winter Storms	Public Information and Involvement, Prevention	This strategy is used during plan reviews for new developments in town.	Completed
Improve/increase salt shed capacity	Winter Storms	Emergency Services	Larger salt storage shed is needed to ensure adequate materials on hand for road treatment	Deferred
Have a structural Engineer investigate current structures used as shelters, to determine if any work should be done to make the structures more earthquake resistant.	Earthquake	Structural Protection, Prevention	The committee felt this was no longer a town priority for as shelters are structurally secure.	Removed-Committee feels structures are adequate given code requirements.

Mitigation Strategies or Action	Mitigation Category	Hazard(s) Mitigated	Description	Status 2018: New/Completed/Deferred/ Removed
Shop Pond Dam Repair	Flooding	Structural Protection, Property Protection	Shop Pond Dam needs gate valve, guard rail and slope repair	Completed
Culvert Maintenance Program	Flooding	Property Protection, Structural Protection	Develop a program that will help alleviate flood prone areas and under sized culverts as well as help the community comply with EPA MS4 requirements	Completed
Town Beach Driveway Erosion Control Project	Flooding	Property Protection, Structural Protection	The town beach driveway allows rain water runoff to cause erosion and siltation in the water and on the beach.	Completed
Manufactured Housing Wind Mitigation Analysis	Severe Winds	Property Protection	Many manufactured houses in town is for elderly populations. By conducting an analysis and ensuring tie downs are complete, structural integrity will not be compromised during times of severe wind	Completed
Outreach and Education for emergency services	All Hazards	Public Information	Providing an emergency response manual with other general town information will help increase the local populations knowledge of what to do and who to call in the instance of an accident or major disaster.	Completed
Establish heating and cooling center at the Library; purchase generator	All Hazards	Emergency Services	Shelter needed during periods of extreme heat or cold, or extended power outage	New
Connect Library to water system	All Hazards	Emergency Services	Library does not have an independent water connection; receives water through line from another building	New
Enhance communication infrastructure	All Hazards	Public Information	Improve radio communication between transmit and receive sites	New

CHAPTER VII - FEASIBILITY AND PRIORITIZATION OF PROPOSED MITIGATION STRATEGIES

The goal of each strategy or action is reduction or prevention of damage from a hazard event. To determine their effectiveness in accomplishing this goal, a set of criteria was applied to each proposed strategy. A set of questions developed by the Committee that included the STAPLEE method was developed to rank the proposed mitigation actions. The STAPLEE method analyzes the Social, Technical, Administrative, Political, Legal, Economic and Environmental aspects of a project and is commonly used by public administration officials and planners for making planning decisions. The following questions were asked about the proposed mitigation strategies identified in Table 5:

- Does it reduce disaster damage?
- Does it contribute to other goals?
- Does it benefit the environment?
- Does it meet regulations?
- Will historic structures be saved or protected?
- Does it help achieve other community goals?
- Could it be implemented quickly?

STAPLEE criteria:

Social: Is the proposed strategy socially acceptable to the community? Are there equity issues involved that would mean that one segment of the community is treated unfairly?

Technical: Will the proposed strategy work? Will it create more problems than it solves?

Administrative: Can the community implement the strategy? Is there someone to coordinate and lead the effort?

Political: Is the strategy politically acceptable? Is there public support both to implement and to maintain the project?

Legal: Is the community authorized to implement the proposed strategy? Is there a clear legal basis or precedent for this activity?

Economic: What are the costs and benefits of this strategy? Does the cost seem reasonable for the size of the problem and the likely benefits?

Environmental: How will the strategy impact the environment? Will the strategy need environmental regulatory approvals?

Each proposed mitigation strategy was evaluated using the above criteria and assigned a score (Good = 3, Average = 2, Poor = 1) based on the above criteria. An evaluation chart with total scores for each strategy can be found in the collection of individual tables under Tables 6.

Table 9a: Encourage road connections rather than cul-de-sacs

Criteria	Score
Does it reduce disaster damage?	2
Does it contribute to other goals?	3
Does it benefit the environment?	1
Does it meet regulations?	2
Will historic structures be saved or protected?	1
Does it help achieve other community goals?	3
Could it be implemented quickly?	1
S: Is it Socially acceptable?	1
T: Is it Technically feasible and potentially successful?	3
A: Is it Administratively workable?	3
P: Is it Politically acceptable?	1
L: Is there Legal authority to implement?	3
E: Is it Economically beneficial?	3
E: Are other Environmental approvals required?	3
SCORE	30

Table 9b: Increase salt shed capacity

Criteria	Score
Does it reduce disaster damage?	3
Does it contribute to other goals?	3
Does it benefit the environment?	2
Does it meet regulations?	2
Will historic structures be saved or protected?	1
Does it help achieve other community goals?	3
Could it be implemented quickly?	2
S: Is it Socially acceptable?	3
T: Is it Technically feasible and potentially successful?	3
A: Is it Administratively workable?	3
P: Is it Politically acceptable?	3
L: Is there Legal authority to implement?	3
E: Is it Economically beneficial?	2
E: Are other Environmental approvals required?	1
SCORE	34

Table 9c: Purchase generator to establish heating and cooling center at Library

Criteria	Score
Does it reduce disaster damage?	1
Does it contribute to other goals?	3
Does it benefit the environment?	2
Does it meet regulations?	1
Will historic structures be saved or protected?	1
Does it help achieve other community goals?	3
Could it be implemented quickly?	3
S: Is it Socially acceptable?	3
T: Is it Technically feasible and potentially successful?	3
A: Is it Administratively workable?	3
P: Is it Politically acceptable?	3
L: Is there Legal authority to implement?	3
E: Is it Economically beneficial?	2
E: Are other Environmental approvals required?	3
SCORE	34

Table 9d: Connect Library to water system

Criteria	Score
Does it reduce disaster damage?	1
Does it contribute to other goals?	3
Does it benefit the environment?	2
Does it meet regulations?	1
Will historic structures be saved or protected?	1
Does it help achieve other community goals?	3
Could it be implemented quickly?	3
S: Is it Socially acceptable?	3
T: Is it Technically feasible and potentially successful?	3
A: Is it Administratively workable?	3
P: Is it Politically acceptable?	3
L: Is there Legal authority to implement?	3
E: Is it Economically beneficial?	2
E: Are other Environmental approvals required?	3
SCORE	34

Table 9e: Enhance communication infrastructure

Criteria	Score
Does it reduce disaster damage?	3
Does it contribute to other goals?	3
Does it benefit the environment?	1
Does it meet regulations?	3
Will historic structures be saved or protected?	2
Does it help achieve other community goals?	3
Could it be implemented quickly?	3
S: Is it Socially acceptable?	3
T: Is it Technically feasible and potentially successful?	3
A: Is it Administratively workable?	3
P: Is it Politically acceptable?	3
L: Is there Legal authority to implement?	3
E: Is it Economically beneficial?	3
E: Are other Environmental approvals required?	1
SCORE	37

CHAPTER IX - IMPLEMENTATION SCHEDULE FOR PRIORITY MITIGATION STRATEGIES

This step involves developing an action plan that outlines who is responsible for implementing each of the prioritized strategies determined in the previous step, as well as when and how the actions will be implemented. The following questions were asked to develop an implementation schedule for the identified priority mitigation strategies:

WHO? Who will lead the implementation efforts? Who will put together funding requests and applications?

HOW? How will the community fund these projects? How will the community

implement these projects? What resources will be needed to implement

these projects?

WHEN? When will these actions be implemented, and in what order?

Table 10 is the Action Plan, and includes the responsible party (WHO), how the project will be supported (HOW), and what the timeframe is for implementation of the project (WHEN). Also included is a cost estimate for each project if available.

Table 10: Action Plan for Proposed Mitigation Actions

STAPLEE	Project	Responsibility/	Funding/	Estimate	Time
Score		Oversight	Support	d Cost	frame
37	Communication	Fire Chief	Town/EMPG	\$50K	Short term/
37	Infrastructure	riic cilici			1 year or less
24	Increase salt	Highway Dont	Town	\$120K	Short term/ 1
34	shed capacity	Highway Dept.			year or less
	Generator for		Town/EMPG		
	Library to				61 / 4
34	establish heating	EMD		\$40K	Short term/ 1
	and cooling			•	year or less
	center				
2.4	Connect Library	EMD/Library	Taxus /FNADC	¢1EV	Medium term/
34	to water system	Trustees	Town/EMPG	\$15K	2-3 years
	Encourage road				
30	connections	Diameira - Daand	Town	No Cost	Short term/
	rather than cul-	Planning Board			
	de-sacs				

CHAPTER X - MONITORING, EVALUATING AND UPDATING THE PLAN

Incorporating the Plan into Existing Planning Mechanisms

Upon review and approval by FEMA and the State of New Hampshire, the Plan will be adopted as a standalone document of the Town and as an appendix of the Town's Emergency Operations Plan (EOP). The Plan will also be consulted when the Town updates its Capital Improvement Program (CIP). The Planning Board is responsible for updating the CIP annually, and will review the Action Plan during each update. The Planning Board in conjunction with Portsmouth Emergency Management will determine what items can and should be added to the CIP based on the Town's annual budget and possible sources of other funding. Considerations about future land use and proximity to current and potential hazard areas need to be inherently part of the planning process. NH RSA 674:2 III (e) gives cities the authority to include a natural hazards section, which documents the physical characteristics, severity, and extent of any potential natural hazards to the community, within the framework of a Master Plan.

Monitoring, Evaluating and Updating the Plan

Recognizing that many mitigation projects are ongoing, and that while in the implementation stage communities may suffer budget cuts, experience staff turnover, or projects may fail altogether, a good plan needs to provide for periodic monitoring and evaluation of its successes and failures and allow for updates of the Plan where necessary.

To track progress and update the Mitigation Strategies identified in the Action Plan, it is recommended that the Town revisit the Plan annually, or after a hazard event. If it is not realistic or appropriate to revise the Plan every year, then the Plan will be revisited no less then every five years. The Emergency Management Director is responsible for initiating this review with members of the Town that are appropriate including members of the public. In keeping with the process of adopting the 2018 Plan Update, a public hearing to receive public comment on Plan maintenance and updating will be held during any review of the Plan. This publicly noticed meeting will allow for members of the community not involved in developing the Plan to provide input and comments each time the Plan is revised. The final revised Plan will be adopted by the Board of Selectmen appropriately, at a second publicly noticed meeting.

Changes should be made to the Plan to accommodate for projects that have failed or are not considered feasible after a review for their consistency with STAPLEE, the timeframe, the community's priorities, and funding resources. Priorities that were not ranked high, but identified as potential mitigation strategies, should be reviewed as well during the monitoring and update of this Plan to determine feasibility of future implementation.

APPENDIX A:

SUMMARY OF HAZARD MITIGATION STRATEGIES

I. RIVERINE MITIGATION

- **A. PREVENTION** Prevention measures are intended to keep the problem from occurring in the first place, and/or keep it from getting worse. Future development should not increase flood damage. Building, zoning, planning, and/or code enforcement officials usually administer preventative measures.
 - 1. Planning and Zoning Land use plans are put in place to guide future development, recommending where and where not development should occur. Sensitive and vulnerable lands can be designated for uses that would not be incompatible with occasional flood events such as parks or wildlife refuges. A Capital Improvements Program can recommend the setting aside of funds for public acquisition of these designated lands. The zoning ordinance can regulate development in these sensitive areas by limiting or preventing some or all development for example, by designating floodplain overlay, conservation, or agricultural districts.
 - 2. Open Space Preservation Preserving open space is the best way to prevent flooding and flood damage. Open space preservation should not, however, be limited to the flood plain, since other areas within the watershed may contribute to controlling the runoff that exacerbates flooding. Land Use and Capital Improvement Plans should identify areas to be preserved by acquisition and other means, such as purchasing easements. Aside from outright purchase, open space can also be protected through maintenance agreements with the landowners, or by requiring developers to dedicate land for flood flow, drainage and storage.
 - **3.** Floodplain Development Regulations Floodplain development regulations typically do not prohibit development in the special flood hazard area, but they do impose construction standards on what is built there. The intent is to protect roads and structures from flood damage and to prevent the development from aggravating the flood potential. Floodplain development regulations are generally incorporated into subdivision regulations, building codes, and floodplain ordinances, which either stand-alone or are contained within a zoning ordinance.

Subdivision Regulations: These regulations govern how land will be divided into separate lots or sites. They should require that any flood hazard areas be shown on the plat, and that every lot has a buildable area that is above the base flood elevation.

Building Codes: Standards can be incorporated into building codes that address flood proofing for all new and improved or repaired buildings.

Floodplain Ordinances: Communities that participate in the National Flood Insurance Program are required to adopt the minimum floodplain management regulations, as developed by FEMA. The regulations set minimum standards for subdivision regulations and

building codes. Communities may adopt more stringent standards than those set forth by FEMA.

- **4. Stormwater Management** Development outside of a floodplain can contribute significantly to flooding by covering impervious surfaces, which increases storm water runoff. Storm water management is usually addressed in subdivision regulations. Developers are typically required to build retention or detention basins to minimize any increase in runoff caused by new or expanded impervious surfaces, or new drainage systems. Generally, there is a prohibition against storm water leaving the site at a rate higher than it did before the development. One technique is to use wet basins as part of the landscaping plan of a development. It might even be possible to site these basins based on a watershed analysis. Since detention only controls the runoff rates and not volumes, other measures must be employed for storm water infiltration for example, swales, infiltration trenches, vegetative filter strips, and permeable paving blocks.
- **5. Drainage System Maintenance** Ongoing maintenance of channel and detention basins is necessary if these facilities are to function effectively and efficiently over time. A maintenance program should include regulations that prevent dumping in or altering watercourses or storage basins; regrading and filling should also be regulated. Any maintenance program should include a public education component, so that the public becomes aware of the reasons for the regulations. Many people do not realize the consequences of filling in a ditch or wetland or regrading their yard without concern for runoff patterns.
- **B.** PROPERTY PROTECTION Property protection measures are used to modify buildings subject to flood damage, rather than to keep floodwaters away. These may be less expensive to implement, as they are often carried out on a cost-sharing basis. In addition, many of these measures do not affect a building's appearance or use, which makes them particularly suitable for historical sites and landmarks.
 - 1. Relocation Moving structures out of the floodplain is the surest and safest way to protect against damage. Relocation is expensive, however, so this approach will probably not be used except in extreme circumstances. Communities that have areas subject to severe storm surges, ice jams, etc. might want to consider establishing a relocation program, incorporating available assistance.
 - 2. Acquisition Acquisition by a governmental entity of land in a floodplain serves two main purposes: (1) it ensures that the problem of structures in the floodplain will be addressed; and (2) it has the potential to convert problem areas into community assets, with accompanying environmental benefits. Acquisition is more cost effective than relocation in those areas that are subject to storm surges, ice jams, or flash flooding. Acquisition, followed by demolition, is the most appropriate strategy for those buildings that are simply too expensive to move, as well as for dilapidated structures that are not worth saving or protecting. Relocation can be expensive; however, there are government grants and loans that can be applied toward such efforts.

- **3. Building Elevation** Elevating a building above the base flood elevation is the best onsite protection strategy. The building could be raised to allow water to run underneath it, or fill could be brought in to elevate the site on which the building sits. This approach is cheaper than relocation and tends to be less disruptive to a neighborhood. Elevation is required by law for new and substantially improved residences in a floodplain and is commonly practiced in flood hazard areas nationwide.
- **4. Floodproofing** If a building cannot be relocated or elevated, it may be floodproofed. This approach works well in areas of low flood threat. Flood proofing can be accomplished through barriers to flooding, or by treatment to the structure itself.

Barriers: Levees, floodwalls and berms can keep floodwaters from reaching a building. These are useful, however, only in areas subject to shallow flooding.

Dry Flood proofing: This method seals a building against the water by coating the walls with waterproofing compounds or plastic sheeting. Openings, such doors, windows, etc. are closed either permanently with removable shields or with sandbags.

Wet Flood proofing: This technique is usually considered a last resort measure, since water is intentionally allowed into the building to minimize pressure on the structure. Approaches range from moving valuable items to higher floors to rebuilding the floodable area. An advantage over other approaches is that simply by moving household goods out of the range of floodwaters, thousands of dollars can be saved in damages.

- **5. Sewer Backup Protection -** Storm water overloads can cause backup into basements through sanitary sewer lines. Houses that have any kind of connection to a sanitary sewer system whether it is downspouts, footing drain tile, and/or sump pumps, can be flooded during a heavy rain event. To prevent this, there should be no such connections to the system, and all rain and ground water should be directed onto the ground, away from the building. Other protections include:
- Floor drain plugs and floor drain standpipe, which keep water from flowing out of the lowest opening in the house.
- Overhead sewer keeps water in the sewer line during a backup.
- Backup valve allows sewage to flow out while preventing backups from flowing into the house.
- **6. Insurance** Above and beyond standard homeowner insurance, there is other coverage a homeowner can purchase to protect against flood hazard. Two of the most common are National Flood Insurance and basement backup insurance.

National Flood Insurance: When a community participates in the National Flood Insurance Program, any local insurance agent can sell separate flood insurance policies under rules

and rates set by FEMA. Rates do not change after claims are paid because they are set on a national basis.

Basement Backup Insurance: National Flood Insurance offers an additional deductible for seepage and sewer backup, provided there is a general condition of flooding in the area that was the proximate cause of the basement getting wet. Most exclude damage from surface flooding that would be covered by the NFIP.

- **C. NATURAL RESOURCE PROTECTION -** Preserving or restoring natural areas or the natural functions of floodplain and watershed areas provide the benefits of eliminating or minimizing losses from floods, as well as improve water quality and wildlife habitats. Parks, recreation, or conservation agencies usually implement such activities. Protection can also be provided through various zoning measures that are specifically designed to protect natural resources.
 - 1. Wetlands Protection Wetlands can store large amounts of floodwaters, slowing and reducing downstream flows, and filtering the water. Any development that is proposed in a wetland is regulated by either federal and/or state agencies. Depending on the location, the project might fall under the jurisdiction of the U.S. Army Corps of Engineers, which in turn, calls upon several other agencies to review the proposal. In New Hampshire, the N.H. Wetlands Board must approve any project that impacts a wetland. And, many communities in New Hampshire also have local wetland ordinances. Generally, the goal is to protect wetlands by preventing development that would adversely affect them. Mitigation techniques are often employed, which might consist of creating a wetland on another site to replace what would be lost through the development. This is not an ideal practice, however, since it takes many years for a new wetland to achieve the same level of quality as an existing one.
 - 2. Erosion and Sedimentation Control Controlling erosion and sediment runoff during construction and on farmland is important, since eroding soil will typically end up in downstream waterways. And, because sediment tends to settle where the water flow is slower, it will gradually fill in channels and lakes, reducing their ability to carry or store floodwaters. Practices to reduce erosion and sedimentation have two principal components: (1) minimize erosion with vegetation and; (2) capture sediment before it leaves the site. Slowing the runoff increases infiltration into the soil, thereby controlling the loss of topsoil from erosion and the resulting sedimentation. Runoff can be slowed by vegetation, terraces, contour strip farming, no-till farm practices, and impoundments (such as sediment basins, farm ponds, and wetlands).
 - **3. Best Management Practices** Best Management Practices (BMPs) are measures that reduce nonpoint source pollutants that enter waterways. Nonpoint source pollutants are carried by storm water to waterways, and include such things as lawn fertilizers, pesticides, farm chemicals, and oils from street surfaces and industrial sites. BMPs can be incorporated into many aspects of new developments and ongoing land use practices. In New Hampshire, the Department of Environmental Services has developed best management practices for a range of activities, from farming to earth excavations.

- **D. EMERGENCY SERVICES** Emergency services protect people during and after a flood. Many communities in New Hampshire have emergency management programs in place, administered by an emergency management director (very often the local police or fire chief).
 - 1. Flood Warning On large rivers, the National Weather Service handles early recognition. Communities on smaller rivers must develop their own warning systems. Warnings may be disseminated in a variety of ways, such as sirens, radio, television, mobile public-address systems, or door-to-door contact. It seems that multiple or redundant systems are the most effective, giving people more than one opportunity to be warned.
 - **2.** Flood Response Flood response refers to actions that are designed to prevent or reduce damage or injury, once a flood threat is recognized. Such actions and the appropriate parties include:
 - activating the emergency operations center (emergency director)
 - sandbagging designated areas (public works department)
 - closing streets and bridges (police department)
 - shutting off power to threatened areas (public service)
 - releasing children from school (school district)
 - ordering an evacuation (selectmen/city council/emergency director)
 - opening evacuation shelters (churches, schools, Red Cross, municipal facilities)

These actions should be part of a flood response plan, which should be developed in coordination with the persons and agencies that share the responsibilities. Drills and exercises should be conducted so that the key participants know what they are supposed to do.

- **3. Critical Facilities Protection** Protecting critical facilities is vital, since expending efforts on these facilities can draw workers and resources away from protecting other parts of City. Buildings or locations vital to the flood response effort:
- emergency operations centers
- police and fire stations
- hospitals
- highway garages
- selected roads and bridges
- evacuation routes
- buildings or locations that, if flooded, would create secondary disasters
- hazardous materials facilities
- water/wastewater treatment plants
- schools
- nursing homes

All such facilities should have their own flood response plan that is coordinated with the community's plan. Nursing homes, other public health facilities, and schools will typically be required by the state to have emergency response plans in place.

- **4. Health and Safety Maintenance -** The flood response plan should identify appropriate measures to prevent danger to health and safety. Such measures include:
- patrolling evacuated areas to prevent looting
- providing safe drinking water
- vaccinating residents for tetanus
- clearing streets
- cleaning up debris

The plan should also identify which agencies will be responsible for carrying out the identified measures. A public information program can be helpful to educate residents on the benefits of taking health and safety precautions.

Structural Projects - Structural projects are used to prevent floodwaters from reaching properties. These are all man-made structures and can be grouped into the six types of discussed below. The shortcomings of structural approaches are that:

- they can be very expensive
- they disturb the land, disrupt natural water flows, and destroy natural habitats
- they are built to an anticipated flood event, and may be exceeded by a greater-thanexpected flood
- they can create a false sense of security

Reservoirs - Reservoirs control flooding by holding water behind dams or in storage basins. After a flood peaks, water is released or pumped out slowly at a rate the river downstream can handle.

Reservoirs are suitable for protecting existing development, and they may be the only flood control measure that can protect development close to a watercourse. They are most efficient in deeper valleys or on smaller rivers where there is less water to store. Reservoirs might consist of man-made holes dug to hold the approximate amount of floodwaters, or even abandoned quarries. As with other structural projects, reservoirs:

- are expensive
- occupy a lot of land
- require periodic maintenance
- may fail to prevent damage from floods that exceed their design levels
- may eliminate the natural and beneficial functions of the floodplain

Reservoirs should only be used after a thorough watershed analysis that identifies the most appropriate location and ensures that they would not cause flooding somewhere else. Because they are so expensive and usually involve more than one community, they are typically implemented with the help of state or federal agencies, such as the Army Corps of Engineers.

Levees/Floodwalls - Probably the best know structural flood control measure is either a levee (a barrier of earth) or a floodwall made of steel or concrete erected between the watercourse and the land. If space is a consideration, floodwalls are typically used, since levees need more space. Levees and floodwalls should be set back out of the floodway, so that they will not divert floodwater onto other properties.

Diversions - A diversion is simply a new channel that sends floodwater to a different location, thereby reducing flooding along an existing watercourse. Diversions can be surface channels, overflow weirs, or tunnels. During normal flows, the water stays in the old channel. During flood flows, the stream spills over the diversion channel or tunnel, which carries the excess water to the receiving lake or river.

Diversions are limited by topography; they won't work everywhere. Unless the receiving water body is relatively close to the flood prone stream and the land in between is low and vacant, the cost of creating a diversion can be prohibitive. Where topography and land use are not favorable, a more expensive tunnel is needed. In either case, care must be taken to ensure that the diversion does not create a flooding problem somewhere else.

Channel Modifications - Channel modifications include making a channel wider, deeper, smoother, or straighter. These techniques will result in more water being carried away, but, as with other techniques mentioned, it is important to ensure that the modifications do not create or increase a flooding problem downstream.

Dredging: Dredging is often cost-prohibitive because the dredged material must be disposed of somewhere else, and the stream will usually fill back in with sediment. Dredging is usually undertaken only on larger rivers, and then only to maintain a navigation channel.

Drainage modifications: These include man-made ditches and storm sewers that help drain areas where the surface drainage system is inadequate or where underground drainage ways may be safer or more attractive. These approaches are usually designed to carry the runoff from smaller, more frequent storms.

Storm Sewers - Mitigation techniques for storm sewers include installing new sewers, enlarging small pipes, street improvements, and preventing back flow. Because drainage ditches and storm sewers convey water faster to other locations, improvements are only recommended for small local problems where the receiving body of water can absorb the increased flows without increased flooding.

In many developments, streets are used as part of the drainage system, to carry or hold water from larger, less frequent storms. The streets collect runoff and convey it to a receiving sewer, ditch, or stream. Allowing water to stand in the streets and then draining it slowly can be a more effective and less expensive measure than enlarging sewers and ditches.

Public Information - Public information activities are intended to advise property owners, potential property owners, and visitors about the hazards associated with a property, ways to

protect people and property from these hazards, and the natural and beneficial functions of a floodplain.

1. Map Information - Flood maps developed by FEMA outline the boundaries of the flood hazard areas. These maps can be used by anyone interested in a property to determine if it is flood-prone. These maps are available from FEMA, the NH Office of Emergency Management, the NH Office of State Planning, or your regional planning commission.

Outreach Projects - Outreach projects are proactive; they give the public information even if they have not asked for it. Outreach projects are designed to encourage people to seek out more information and take steps to protect themselves and their properties. Examples of outreach activities include:

- Mass mailings or newsletters and e-newsletters to all residents
- Posting resource information on City website and social media accounts
- Notices directed to floodplain residents
- Displays in public buildings, malls, etc.
- Newspaper articles and special sections
- Radio and TV news releases and interview shows
- A local flood proofing video for cable TV programs and to loan to organizations
- A detailed property owner handbook tailored for local conditions
- Presentations at meetings of neighborhood groups

Research has shown that outreach programs work, although awareness is not enough. People need to know what they can do about the hazards, so projects should include information on protection measures. Research also shows that locally designed and run programs are much more effective than national advertising.

Real Estate Disclosure - Disclosure of information regarding flood-prone properties is important if potential buyers are to be able to mitigate damage. Federally regulated lending institutions are required to advise applicants that a property is in the floodplain. However, this requirement needs to be met only five days prior to closing, and by that time, the applicant is typically committed to the purchase. State laws and local real estate practice can help by making this information available to prospective buyers early in the process.

Library - Your local library can serve as a repository for pertinent information on flooding and flood protection. Some libraries also maintain their own public information campaigns, augmenting the activities of the various governmental agencies involved in flood mitigation.

Technical Assistance - Certain types of technical assistance are available from the NFIP Coordinator, FEMA, and the Natural Resources Conservation District. Community officials can also set up a service delivery program to provide one-on-one sessions with property owners. An example of technical assistance is the flood audit, in which a specialist visits a property. Following the visit, the owner is provided with a written report, detailing the past and potential flood depths, and recommending alternative protection measures.

Environmental Education - Education can be a great mitigating tool, if people can learn what not to do before damage occurs. And the sooner the education begins, the better. Environmental education programs for children can be taught in the schools, park and recreation departments, conservation associations, or youth organizations. An activity can be as involved as course curriculum development or as simple as an explanatory sign near a river. Education programs do not have to be limited to children. Adults can benefit from knowledge of flooding and mitigation measures. And decision-makers, armed with this knowledge, can make a difference in their communities.

II. EARTHQUAKES

A. PREVENTIVE - Planning/zoning to keep critical facilities away from fault lines.

Planning, zoning and building codes to avoid areas below steep slopes or soils subject to liquefaction.

Building codes to prohibit loose masonry, overhangs, etc.

B. PROPERTY PROTECTION:

Acquire and clear hazard areas.

Retrofitting to add braces, remove overhangs.

Apply mylar to windows and glass surfaces to protect from shattering glass.

Tie down major appliances provide flexible utility connections.

Earthquake insurance riders.

- **C. EMERGENCY SERVICES -** Earthquake response plans to account for secondary problems, such as fires and hazardous materials spills.
- **D. EMERGENCY SERVICES -** Slope stabilization.

III. DAM FAILURE

A. PREVENTIVE:

Dam failure inundation maps.

Planning/zoning/open space preservation to keep area clear.

Building codes with flood elevation based on dam failure.

Dam safety inspections.

Draining the reservoir when conditions appear unsafe.

- **B. PROPERTY PROTECTION -** Acquisition of buildings in the path of a dam breach flood. Flood insurance.
- **C. EMERGENCY SERVICES -** Dam conditioning monitoring; warning and evacuation plans based on dam failure.
- **D. EMERGENCY SERVICES -** Dam improvements, spillway enlargements. Remove unsafe dams.

IV. WILDFIRES

A. PREVENTIVE:

Zoning districts to reflect fire risk zones.

Planning and zoning to restrict development in areas near fire protection and water resources. Requiring new subdivisions to space buildings, provide firebreaks, on-site water storage, wide roads multiple accesses.

Building code standards for roof materials, spark arrestors.

Maintenance programs to clear dead and dry bush, trees.

Regulation on open fires.

B. PROPERTY PROTECTION:

Retrofitting of roofs and adding spark arrestors.

Landscaping to keep bushes and trees away from structures.

Insurance rates based on distance from fire protection.

- C. NATURAL RESOURCE PROTECTION Prohibit development in high-risk areas.
- D. **EMERGENCY SERVICES** Fire Fighting

V. WINTER STORMS

A. PREVENTIVE - Building code standards for light frame construction, especially for windresistant roofs.

B. PROPERTY PROTECTION:

Storm shutters and windows

Hurricane straps on roofs and overhangs

Seal outside and inside of storm windows and check steals in spring and fall.

Family and/or company severe weather action plan & drills:

include a NOAA weather radio

designate a shelter area or location

keep a disaster supply kit, including stored food and water

keep snow removal equipment in good repair; have extra shovels, sand, rock, salt and gas know how to turn off water, gas, and electricity at home or work

- C. NATURAL RESOURCE PROTECTION Maintenance program for trimming tree and shrubs
- D. EMERGENCY SERVICES Early warning systems/NOAA Weather Radio Evacuation Plans

APPENDIX B: TECHNICAL AND FINANCIAL ASSISTANCE FOR HAZARD MITIGATION

Local Municipalities must have a FEMA-approved Hazard Mitigation Plan to be eligible for Hazard Mitigation Assistance Grants. Information on these grants may be found at: http://www.fema.gov/media-library-data/1424983165449-38f5dfc69c0bd4ea8a161e8bb7b79553/HMA Guidance 022715 508.pdf

HAZARD MITIGATION GRANT PROGRAM (HMGP) - Authorized under Section 404 of the Stafford Act, the Hazard Mitigation Grant Program (HMGP) provides grants to States and local governments to implement long-term hazard mitigation measures after a major disaster declaration. The purpose of the program is to reduce the loss of life and property due to natural disasters and to enable mitigation measures to be implemented during the immediate recovery from a disaster. The purpose of the program is to reduce the loss of life and property due to natural disasters and to enable mitigation measures to be implemented during the immediate recovery from a disaster.

Hazard Mitigation Grant Program funding is only available in States following a Presidential disaster declaration. Eligible applicants are:

- State and local governments
- Indian tribes or other tribal organizations
- Certain private non-profit organization

Individual homeowners and businesses may not apply directly to the program; however, a community may apply on their behalf. HMGP funds may be used to fund projects that will reduce or eliminate the losses from future disasters. Projects must provide a long-term solution to a problem, for example, elevation of a home to reduce the risk of flood damages as opposed to buying sandbags and pumps to fight the flood. In addition, a project's potential savings must be more than the cost of implementing the project. Funds may be used to protect either public or private property or to purchase property that has been subjected to, or is in danger of, repetitive damage.

PRE-DISASTER MITIGATION GRANTS PROGRAM - The <u>Pre-Disaster Mitigation (PDM) program</u> provides technical and financial assistance to States and local governments for cost-effective pre-disaster hazard mitigation activities that complement a comprehensive mitigation program, and reduce injuries, loss of life, and damage and destruction of property. FEMA provides grants to States and Federally recognized Indian tribal governments that, in turn, provide sub-grants to local governments (to include Indian Tribal governments) for mitigation activities such as planning, and the implementation of projects identified through the evaluation of natural hazards.

FLOOD MITIGATION ASSISTANCE (FMA) PROGRAM - FEMA provides funding to assist States and communities in implementing measures to reduce or eliminate the long-term risk of flood damage to buildings, manufactured homes, and other structures insurable under the National Flood Insurance Program (NFIP). There are three types of grants available under FMA: Planning, Project, and Technical Assistance Grants. FMA Planning Grants are available to States and communities to prepare Flood Mitigation Plans. NFIP-participating communities with approved Flood Mitigation Plans can apply for FMA Project Grants. FMA Project Grants are available to States and NFIP participating communities to implement measures to reduce flood losses. Ten percent of the Project Grant is made available to States as a Technical Assistance Grant. These funds may be used by the State to help administer the program. Communities receiving FMA Planning and Project Grants must be participating in the NFIP.

EMERGENCY MANAGEMENT PERFORMANCE GRANT

GUIDELINES - Emergency Management Performance Grant (EMPG Program) funding is available to local communities and eligible Agencies for projects that fall in FOUR general areas of Emergency Management: Planning activities; Training activities; Drills and Exercises; and Emergency Management Administration. Contact Heather Dunkerley at NHHSEM, heather.dunkerley@dos.nh.gov, 603-223-3614 for assistance.

The following list of possible projects and activities is meant to guide you in selecting projects for an EMA Grant Submission. This list of suggested projects is not intended to be all-inclusive.

Local communities or agencies may have other specific projects and activities that reflect local needs based on local capability assessments and local hazards.

Planning Activities may include:

- Develop a Hazard Mitigation Plan for your community.
- Prepare a hazard mitigation project proposal for submission to NHHSEM.
- Create, revise, or update Dam Emergency Action plans.
- Update your local Emergency Operations Plan (EOP). Consider updating a number of specific annexes each year to ensure that the entire plan is updated at least every four years.
- If applicable, develop or incorporate a regional HazMat Team Annex into your EOP.
- Develop an Anti-Terrorism Annex into your EOP.
- Develop a local/regional Debris Management Annex into your EOP.
- Develop and maintain pre-scripted requests for additional assistance (from local area public works, regional mutual aid, State resources, etc.) and local declarations of emergency.
- Develop and maintain written duties and responsibilities for EOC staff positions and agency representatives.
- Develop and maintain a list of private non-profit organizations within your local jurisdiction to ensure that these organizations are included in requests for public assistance funds.
- Prepare a submission for nomination as a "Project Impact" Community.

Training Activities may include:

- Staff members attend training courses at the Emergency Management Institute.
- Staff members attend a "field delivered" training course conducted by NHHSEM.
- Staff members attend other local, State, or nationally sponsored training event, which provides skills or knowledge relevant to emergency management.
- Staff members complete one or more FEMA Independent Study Courses.
- Identify and train a pre-identified local damage assessment team.

Drills and Exercises might include:

- Conduct multi-agency EOC Exercise (Tabletop or Functional) and forward an Exercise Evaluation Report, including after action reports, to NHHSEM (external evaluation of exercises is strongly encouraged). Drills or Exercises might involve any of the following scenarios:
 - Hurricane Exercise
 - o Terrorism Exercise
 - Severe Storm Exercise
 - Communications Exercise
 - Mass Causality Exercise involving air, rail, or ship transportation accident
- Participate in multi-State or multi-Jurisdictional Exercise and forward Exercise Report to NHHSEM.
- HazMat Exercise with Regional HazMat Teams
- NHHSEM Communications Exercises
- Observe or evaluate State or local exercise outside your local jurisdiction.

- Assist local agencies and commercial enterprises (nursing homes, dams, prisons, schools, etc.) in developing, executing, and evaluating their exercise.
- Assist local hospitals in developing, executing and evaluating Mass Care, HazMat, Terrorism, and Special Events Exercises.
- Administrative Projects and Activities may include:
- Maintain an Emergency Operations Center (EOC) and alternate EOC capable of accommodating staff to respond to local emergencies.
- Establish and maintain a Call-Down List for EOC staff.
- Establish and maintain Emergency Response/Recovery Resource Lists.
- Develop or Update Emergency Management Mutual Aid Agreements with a focus on Damage Assessment, Debris Removal, and Resource Management.
- Develop and maintain written duties and responsibilities for EOC staff positions and agency representatives.
- Develop or Update Procedures for tracking of disaster-related expenses by local agencies.

FLOOD MITIGATION ASSISTANCE (FMA) PROGRAM - FMA was created as part of the National Flood Insurance Reform Act (NFIRA) of 1994 (42 U.S.C. 4101) with the goal of reducing or eliminating claims under the National Flood Insurance Program (NFIP). FMA regulations can be found in 44 CFR Part 78. Funding for the program is provided through the National Flood Insurance Fund. FMA is funded at \$20 million nationally. FMA provides funding to assist States and communities in implementing measures to reduce or eliminate the long-term risk of flood damage to buildings, manufactured homes, and other structures insurable under the National Flood Insurance Program (NFIP).

There are three types of grants available under FMA: Planning, Project, and Technical Assistance Grants. FMA Planning Grants are available to States and communities to prepare Flood Mitigation Plans. NFIP-participating communities with approved Flood Mitigation Plans can apply for FMA Project Grants. FMA Project Grants are available to States and NFIP participating communities to implement measures to reduce flood losses. Ten percent of the Project Grant is made available to States as a Technical Assistance Grant. These funds may be used by the State to help administer the program. Communities receiving FMA Planning and Project Grants must be participating in the NFIP. A few examples of eligible FMA projects include: the elevation, acquisition, and relocation of NFIP-insured structures.

States are encouraged to prioritize FMA project grant applications that include repetitive loss properties. The FY 2001 FMA emphasis encourages States and communities to address target repetitive loss properties identified in the Agency's Repetitive Loss Strategy. These include structures with four or more losses, and structures with 2 or more losses where cumulative payments have exceeded the property value. State and communities are also encouraged to develop Plans that address the mitigation of these target repetitive loss properties.

APPENDIX C:

SAFFIR/SIMPSON HURRICANE SCALE

Courtesy of National Hurricane Center

This can be used to give an estimate of the potential property damage and flooding expected along the coast with a hurricane.

Category	Definition	Effects
One	Winds 74- 95 mph	No real damage to building structures. Damage primarily to unanchored mobile homes, shrubbery, and trees. Also, some coastal road flooding and minor pier damage
Two	Winds 96- 110 mph	Some roofing material, door, and window damage to buildings. Considerable damage to vegetation, mobile homes, and piers. Coastal and low-lying escape routes flood 2-4 hours before arrival of center. Small craft in unprotected anchorages break moorings.
Three	Winds 111-130 mph	Some structural damage to small residences and utility buildings with a minor amount of curtainwall failures. Mobile homes are destroyed. Flooding near the coast destroys smaller structures with larger structures damaged by floating debris. Terrain continuously lower than 5 feet ASL may be flooded inland 8 miles or more.
Four	Winds 131-155 mph	More extensive curtainwall failures with some complete roof structure failure on small residences. Major erosion of beach. Major damage to lower floors of structures near the shore. Terrain continuously lower than 10 feet ASL may be flooded requiring massive evacuation of residential areas inland as far as 6 miles.
Five	Winds greater than 155 mph	Complete roof failure on many residences and industrial buildings. Some complete building failures with small utility buildings blown over or away. Major damage to lower floors of all structures located less than 15 feet ASL and within 500 yards of the shoreline. Massive evacuation of residential areas on low ground within 5 to 10 miles of the shoreline may be required.

Additional information: http://www.nhc.noaa.gov/aboutsshws.php

APPENDIX D:

ENHANCED FUJITA TORNADO DAMAGE SCALE

	The Enhanced Fujita Scale					
F-Scale Number	Potential Damage	Wind Speed	Type of Damage			
FO	Light	65 – 85 mph	Little to no damage to man-made structures. Breaks branches off trees; pushes over shallow-rooted trees; damages signs			
F1	Moderate	86 – 110 mph	Beginning of hurricane wind speed; peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos pushed off roads; Moderate damage.			
F2	Considerable	111 – 135 mph	Considerable damage. Roofs torn off frame houses; mobile homes demolished; boxcars from trains pushed over; large trees snapped or uprooted; light object missiles generated.			
F3	Severe	136 – 165 mph	Roof and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cards lifted and thrown.			
F4	Devastating	166 – 200 mph	Well-constructed houses leveled; structures with weak foundations blown away some distance; cars thrown and large missiles generated.			
F5	Incredible	Over 200 mph	Strong frame houses leveled off foundations and carried considerable distances; automobile-sized missiles fly through the air in excess of 109 yards; trees debarked; steel reinforced concrete structures badly damaged. Complete devastation.			

Additional Information:

http://www.spc.noaa.gov/faq/tornado/ef-scale.html

APPENDIX E:

THE RICHTER MAGNITUDE SCALE

Earthquake Severity

Magnitudes	Earthquake Effects
Less than 3.5	Generally not felt but recorded.
3.5-5.4	Often felt, but rarely causes damage.
Under 6.0	At most slight damage to well-designed buildings. Can cause major damage to poorly constructed buildings over small regions.
6.1-6.9	Can be destructive in areas up to about 100 kilometers across where people live.
7.0-7.9	Major earthquake. Can cause serious damage over larger areas.
8 or greater	Great earthquake. Can cause serious damage in areas several hundred kilometers across.

Additional information: https://earthquake.usgs.gov/learn/topics/mercalli.php

https://earthquake.usgs.gov/learn/topics/measure.php

https://earthquake.usgs.gov/data/shakemap/

The Richter Magnitude Scale - Seismic waves are the vibrations from earthquakes that travel through the Earth; they are recorded on instruments called seismographs. Seismographs record a zig-zag trace that shows the varying amplitude of ground oscillations beneath the instrument. Sensitive seismographs, which greatly magnify these ground motions, can detect strong earthquakes from sources anywhere in the world. The time, locations, and magnitude of an earthquake can be determined from the data recorded by seismograph stations.

Earthquakes with magnitude of about 2.0 or less are usually call microearthquakes; they are not commonly felt by people and are generally recorded only on local seismographs. Events with magnitudes of about 4.5 or greater - there are several thousand such shocks annually - are strong enough to be recorded by sensitive seismographs all over the world. Great earthquakes, such as the 1964 Good Friday earthquake in Alaska, have magnitudes of 8.0 or higher. On the average, one earthquake of such size occurs somewhere in the world each year. The Richter Scale has no upper limit. Recently, another scale called the moment magnitude scale has been devised for more precise study of great earthquakes. The Richter Scale is not used to express damage. An earthquake in a densely populated area which results in many deaths and considerable damage may have the same magnitude as a shock in a remote area that does nothing more than frightens wildlife. Large-magnitude earthquakes that occur beneath the oceans may not even be felt by humans.

Appendix F

Extreme Weather Madness Thunderstorm Criteria

THUNDERSTORM TYPES	Rainfall Rate/hr	MAX WIND GUST	HAIL SIZE	PEAK TORNADO Possibility	LIGHTNING FREQUENCY (5 min Intervals)	Darkness Factor	STORM IMPACT
T-1 - Weak thunderstorms or Thundershowers	.0310	< 25 MPH	None	None	Only a few strikes during the storm.	Slightly Dark. Sunlight may be seen under the storm.	No damage. Gusty winds at times.
T-2 – Moderate Thunderstorms.	.10"25"	25-40 MPH	None	None	Occasional 1-10	Moderately Dark. Heavy downpours may cause the need for car lights.	Heavy downpours. Cocasional lightning. Gusty winds. Very little damage. Small tree branches may break Lawn furniture moved around
T-3 – Heavy Thunderstorms 1. Singular or lines of storms.	.25"55"	40-57 MPH	1/4 " to ¾"	EF0	Occasional to Frequent 10-20	Dark. Car lights used. Visibility low in heavy rains. Cars may pull off the road.	1. Minor Damage. 2. Downpours that produce some flooding on streets. 3. Frequent lightning could cause house fires. 4. Hail occurs within the downpours. 5. Small branches are broken. 6. Shingles are blown off roofs.
T-4 - Intense Thunderstorms 1. Weaker supercells 2. Bow Echos or lines of Storms	.55" – 1.25"	58 to 70 MPH	1" to 1.5"	EF0 to EF2	Frequent 20-30	Very Dark. Car lights used. Some street lights come on	Moderate Damage. Heavy rains can cause flooding to streams and creeks. Roadway flooding. 3. Hail can cause dents on cars and cause crop damage. Wind damage to trees and buildings. Tornado damage. Power outages.
T-5 - Extreme Thunderstorms 1. Supercells with familty of tornadoes. 2. Derecho Windstorms	1.25" – 4"	Over 70 Mph	Over 1.5" to 4"	EF3 to EF5	Frequent to Continuous. > 30	Pitch Black, Street Lights come on. House lights maybe used	Severe Damage to Trees and Property. Damage is widespread. Flooding rains. Damaging hail. Damaging wind gusts to trees and buildings. Tornadoes F3-F5 or family of tornadoes can occur. Tornadoes can cause total devastation. Widespread power outages.

Copyright 2010 AccuWeather.com by Sr. Meteorologist Henry Margusity

Appendix G Lightning Risk Definitions

Lightning Risk Definitions				
Low Risk	Thunderstorms are only expected to be isolated or widely scattered in coverage (20 Percent Chance). Atmospheric conditions do not support frequent cloud-to-ground lightning strikes.			
Moderate Risk	Thunderstorms are forecast to be scattered in coverage (30-50 Percent Chance). Atmospheric conditions support frequent cloud-to-ground lightning strikes.			
High Risk	Thunderstorms are forecast to be numerous or widespread in coverage (60-100 Percent Chance). Atmospheric conditions support continuous and intense cloud-to-ground lightning strikes.			

Appendix H Hail Size Description Chart

Hail Size Description Chart				
Hailstone size	Measurement			
nalistolie size	in.	cm.		
bb	< 1/4	< 0.64		
pea	1/4	0.64		
dime	7/10	1.8		
penny	3/4	1.9		
nickel	7/8	2.2		
quarter	1	2.5		
half dollar	1 1/4	3.2		
golf ball	1 3/4	4.4		
billiard ball	2 1/8	5.4		
tennis ball	2 1/2	6.4		
baseball	2 3/4	7.0		
softball	3.8	9.7		
Compact disc / DVD	4 3/4	12.1		
Note: Hail size refers to the diameter of the hailstone.				

Appendix I Sperry-Pitz Ice Accumulation Index

ICE DAMAGE INDEX	DAMAGE AND IMPACT DESCRIPTIONS
0	Minimal risk of damage to exposed utility systems; no alerts or advisories needed for crews, few outages.
1	Some isolated or localized utility interruptions are possible, typically lasting only a few hours. Roads and bridges may become slick and hazardous.
2	Scattered utility interruptions expected, typically lasting 12 to 24 hours. Roads and travel conditions may be extremely hazardous due to ice accumulation.
3	Numerous utility interruptions with some damage to main feeder lines and equipment expected. Tree limb damage is excessive. Outages lasting 1 – 5 days.
4	Prolonged & widespread utility interruptions with extensive damage to main distribution feeder lines & some high voltage transmission lines/structures. Outages lasting 5 – 10 days.
5	Catastrophic damage to entire exposed utility systems, including both distribution and transmission networks. Outages could last several weeks in some areas. Shelters needed.

Appendix J

Wildland Urban Interface (WUI) Exposure Zones – NIST Technical Note 1748, January 2013 Source: National Institute of Standards and Technology (NIST), US Dept. of Commerce

Table 4: E-Scale Building Construction Classes and Attributes

WUI	Building	Ignition	Building Construction and
scale	Construction	Vulnerabilities	Landscaping Attributes for
scale	Class	from Embers	
	Class		Protection against Embers
		and Fire	
E1 or F1	WUI 1	None	Normal Construction Requirements:
			- Maintained Landscaping
			- Local AHJ-Approved Access for
			firefighting equipment
E2 or F2	WUI 2	In this area, highly	Low Construction Hardening Requirements:
		volatile fuels could be	- Treated combustibles allowed on structure
		ignited by embers.	- Attached treated combustibles allowed
		Weathered, dry	- Treated combustibles allowed around
		combustibles with	structure
		large surface areas can	- Low flammability plants
		become targets for	- Irrigated and well maintained Landscaping
		ignition fro m embers.	- Local AHJ-Approved Access for
			firefighting equipment
E3 or F3	WUI 3	Exposed combustibles	Intermediate Construction Hardening
		are likely to ignite in	Requirements:
		this area from high	- No exposed combustibles on structure
		ember flux or high	- Combustibles placed well away from
		heat flux	structure
			- Low flammability plants
			- Irrigated and well maintained landscaping
			- Local AHJ-Approved Access for
			firefighting equipment
E4 or F4	WUI 4	Ignition of	High Construction Hardening Requirements:
		combustibles from	- No exposed combustibles
		direct flame contact is	- All vents, opening must be closed
		likely.	- Windows and doors must be covered
			with insulated non-combustible
			coverings.
			- Irrigated and well maintained low
			flammability landscaping
			- Local AHJ-Approved Access for
			firefighting equipment
		L	mengining equipment

Appendix K Documentation of Planning Process Notice of Public Hearing on Draft Plan

Appendix L
Approval Letters from FEMA